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Abstract

In this paper we propose a formulation of polyconvex anisotropic hyperelasticity at finite strains. The main goal is

the representation of the governing constitutive equations within the framework of the invariant theory which auto-

matically fulfill the polyconvexity condition in the sense of Ball in order to guarantee the existence of minimizers. Based

on the introduction of additional argument tensors, the so-called structural tensors, the free energies and the anisotropic

stress response functions are represented by scalar-valued and tensor-valued isotropic tensor functions, respectively. In

order to obtain various free energies to model specific problems which permit the matching of data stemming from

experiments, we assume an additive structure. A variety of isotropic and anisotropic functions for transversely isotropic

material behaviour are derived, where each individual term fulfills a priori the polyconvexity condition. The tensor

generators for the stresses and moduli are evaluated in detail and some representative numerical examples are pre-

sented. Furthermore, we propose an extension to orthotropic symmetry.
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1. Introduction

Anisotropic materials have a wide range of applications, e.g. in composite materials, in crystals as well as

in biological–mechanical systems. The study of these different materials involves many topics, including

manufacturing processes, anisotropic elasticity and anisotropic inelasticity, and micro-mechanics see e.g.

Jones (1975). In this paper we will focus on a phenomenological description of anisotropic elasticity at large

strains, for small strain formulations see e.g. Ting (1996). The main goal of this work is the construction

of polyconvex anisotropic free energy functions, particularly for transverse isotropic materials. Pro-
posed transversely isotropic free energy functions in the literature are often based on a direct extension of

the small strain theory to the case of finite deformations by replacing the linear strain tensor with the
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Green–Lagrange strain tensor see e.g. Spencer (1987b). Weiss et al. (1996) presented a model for appli-

cations to biological soft tissues for fully incompressible material behaviour. They introduced an expo-

nential function in terms of the so-called mixed invariants. In the recent work of Holzapfel et al. (2000) a

new constitutive orthotropic model for the simulation of arterial walls has been proposed, where each layer
of the artery is modeled as a fiber-reinforced material. In the proposed model the terms in the mixed in-

variants, with respect to several preferred directions, are additively decoupled. That means the model can be

considered as the superposition of different transverse isotropic models. For an overview and a comparative

study of several mechanical models in biomechanical systems see also Holzapfel et al. (2000). A model for

nearly incompressible, transversely isotropic materials for the description of reinforced rubber-like mate-

rials is given in R€uuter and Stein (2000); they also developed an error estimator for the measurement of the

discretization error within the finite element concept. Anisotropic models for the simulation of anisotropic

shells have been proposed by L€uurding (2001) and Itskov (2001). A general framework for representation of
anisotropic elastic materials by symmetric irreducible tensors based on series expansions of elastic free

energy functions in terms of harmonic polynomials was proposed by Hackl (1999). The advantage of this

approach is its ability to derive effective schemes of parameter identifications. A set of physically motivated

deformation invariants for materials exhibiting transverse isotropic behaviour was developed by Criscione

et al. (2001). The authors suggest that this approach is potentially useful for solving inverse problems due to

several orthogonality conditions.

In contrast to this, no analysis of general convexity conditions for anisotropic materials, such as

polyconvexity, has been proposed in the literature to the knowledge of the authors. We will focus on the
case of transverse isotropy at finite strains which automatically satisfy the so-called polyconvexity condition

within the framework of the invariant theory. The complex mechanical behaviour of elastic materials at

large strains with an oriented internal structure can be described with tensor-valued functions in terms of

several tensor variables, the deformation gradient and additional structural tensors. General invariant

forms of the constitutive equations lead to rational strategies for the modelling of the complex anisotropic

response functions. Based on representation theorems for tensor functions the general forms can be derived

and the type and minimal number of the scalar variables entering the constitutive equations can be given.

For an introduction to the invariant formulation of anisotropic constitutive equations based on the concept
of structural tensors, also denoted as the concept of integrity bases, and their representations as isotropic

tensor functions see Spencer (1971), Boehler (1979, 1987), Betten (1987) and Schr€ooder (1996). In this

context see also Smith and Rivlin (1957, 1958).

The main goal of this paper is the establishment of invariant forms of the stress response function bSSð�Þ
which are derived from a scalar-valued free energy function ŵwð�Þ. These invariant forms automatically

satisfy the symmetry relations of the considered body. Furthermore, they are automatically invariant under

coordinate transformations of elements of the material symmetry group. Thus the values of the free energy

function and the values of the stresses can be considered as invariants under all transformations of the
elements of the material symmetry group. For the representation of the scalar-valued and tensor-valued

functions the set of scalar invariants, the integrity bases and the generating set of tensors are required. For

detailed representations of scalar- and tensor-valued functions we refer to Wang (1969a,b, 1970, 1971),

Smith et al. (1963), Smith (1965, 1970, 1971), and Zheng and Spencer (1993a,b). The integrity bases for

polynomial isotropic scalar-valued functions are given by Smith (1965) and the generating sets for the

tensor functions are derived by Spencer (1971). For the classification of material and physical symmetries

see Zheng and Boehler (1994).

The mathematical treatment of boundary value problems is mainly based on the direct methods of
variations, i.e. finding a minimizing deformation of the elastic free energy subject to the specific boundary

conditions. Existence of minimizers of some variational principles in finite elasticity is based on the concept

of quasiconvexity, introduced by Morrey (1952), which ensures that the functional to be minimized is

weakly lower semi-continuous. This inequality condition is rather complicated to handle since it is an in-
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tegral inequality. Thus, a more important concept for practical use is the notion of polyconvexity in the

sense of Ball (1977a,b) (in this context see also Marsden and Hughes, 1983 and Ciarlet, 1988). For isotropic

material response functions there exist some models, e.g. the Ogden-, Mooney-Rivlin- and Neo-Hooke-type

models, which satisfy this concept. Furthermore, for isochoric–volumetric decouplings some forms of
polyconvex energies have been proposed by Dacorogna (1989). Some simple stored energy functions, e.g. of

St. Venant–Kirchhoff-type or formulations based on the so-called Hencky tensor, are however not poly-

convex (see Ciarlet, 1988, Raoult, 1986 and Neff, 2000). It can be shown that polyconvexity of the stored

energy implies that the corresponding acoustic tensor is elliptic for all deformations. The precise difference

between the local property of ellipticity and the non-local condition of quasiconvexity is still an active field

of research. Polyconvexity does not conflict with the possible non-uniqueness of equilibrium solutions,

since it guarantees only the existence of at least one minimizing deformation. It is possible that several

metastable states and several absolute minimizers exist, though even so one might conjecture that apart
from trivial symmetries the absolute minimizer is unique, at least for the pure Dirichlet boundary value

problem. We remark, following Ball (1977a,b), that polyconvexity implies unqualified existence for all

boundary conditions and body forces, which might be somewhat unrealistic. The proof that some energy is

elliptic for some reasonable range of deformation gradients is in general not enough to establish an exis-

tence theorem.

This paper is organized as follows. In Section 2 we present the fundamental kinematic relations at finite

strains and the reduced forms which automatically fulfill the objectivity condition. After that we focus on

the continuum mechanical modelling of anisotropic elasticity based on the concept of structural tensors.
Section 3 is concerned with the construction of transversely isotropic material response. The integrity basis

is given and special model problems are discussed. One part of this section deals with isotropic free energy

terms, where some well-known, as well as some new functions are discussed in detail. The main part of this

section is concerned with polyconvex transversely isotropic functions. For all proposed ansatz functions

the polyconvexity condition is proved. Furthermore, we give geometrical interpretations of some of the

polyconvex polynomial invariants. The representation for the stresses and moduli is given in detail for the

Lagrangian description as well as the expression for the Kirchhoff stresses. The problem of the stress-free

reference configuration and the linearized behaviour near the natural state is discussed in Section 4. Here
we identify the expressions of the material parameters involved in the invariant formulation with the

parameters of the classical formulation for the linearized quantities. An extension to orthotropic material

response is proposed in Section 5 and a short summary of the variational and finite element formulation

and the consistent linearization is given in Section 6. The following section presents two numerical ex-

amples: the three dimensional analysis of a tapered cantilever and the two dimensional simulation of the

elongation of a perforated plate. In the extensive appendix we have summarized the lengthy proofs of the

polyconvexity of the individual terms.

2. Continuum mechanics: foundations

In the following we consider hyperelastic materials which postulate the existence of a so-called Helm-

holtz free–energy function w. The constitutive equations have to fulfill several requirements: the concept of

material symmetry and the principle of material frame indifference, also denoted as principle of material

objectivity. Thus, the constitutive functions for anisotropic solids must satisfy the combined material frame

indifference and the material symmetry condition, which requires them to be an isotropic tensor function.

After giving some fundamental kinematic relations and presenting the well-known reduced forms for the

constitutive equations which automatically fulfill the objectivity condition we focus on the continuum

mechanical modelling of anisotropic elasticity within the framework of isotropic tensor functions based on
the concept of structural tensors.
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2.1. Notation

For a; b 2 R3 we let ha; biR3 denote the scalar product on R3 with norm kakR3 ¼ ha; ai1=2
R3 . We denote with

M3	3 the set of real 3	 3 matrices and by skew ðM3	3Þ the skew-symmetric real 3	 3 matrices. The
standard Euclidean scalar product on M3	3 is given by hH ;BiM3	3 ¼ tr½HBT� and subsequently we have

kHk2M3	3 ¼ hH ;HiM3	3 . P Sym characterizes the set of positive definite symmetric M3	3 matrices. With

AdjH we denote the adjugate matrix of transposed cofactors CofðHÞ such that AdjH ¼ det½H �H�1 ¼
CofðHÞT if H 2 GLð3;RÞ, where GLð3;RÞ characterizes the set of all invertible 3	 3-tensors. The identity

matrix onM3	3 will be denoted by 1 or 1, so that tr½H � ¼ hH ; 1i ¼ H : 1. The index notation of A : H is e.g.

AABHAB and that of Ha ¼ H 
 a is e.g. HABaB. In the following we skip the index R3, M3	3 where there is no

danger of confusion. Furthermore, oFW ðFÞ, oCW ðCÞ, DCW and oFW ðFÞ:H , o2FW ðFÞ:ðH ;HÞ denote Frechet
derivatives (in this context see Appendix A, Lemma A.13).

2.2. Geometry and kinematics

The body of interest in the reference configuration is denoted with B � R3, parametrized in X and the

current configuration with S � R3, parametrized in x. The non-linear deformation map ut : B ! S at

time t 2 Rþ maps points X 2 B onto points x 2 S. The deformation gradient F is defined by

FðXÞ :¼ rutðXÞ ð2:1Þ

with the Jacobian JðXÞ :¼ detFðXÞ > 0. The index notation of F is F a
A :¼ oxa=oXA. An important strain

measure, the right Cauchy–Green tensor, is defined by

C :¼ FTF with CAB ¼ F a
A F

b
B gab; ð2:2Þ

where g denotes the covariant metric tensor in the current configuration. The standard covariant metric

tensors G and g within the Lagrange and Eulerian settings appear in the index representation GAB and gab,
respectively. Thus the contravariant metric tensors G�1 and g�1 have the index representation GAB and gab,
respectively. For the representations in Cartesian coordinates we arrive at the simple expressions

GAB ¼ GAB ¼ dAB for Lagrangian metric tensors and gab ¼ gab ¼ dab for the Eulerian metric tensors. For the

geometrical interpretations of the polynomial invariants in the following sections we often use expressions

based on the mappings of the area and volume elements. Let N dA and nda denote the infinitesimal area
vectors and dV and dv denote the infinitesimal volume elements defined in the reference and the current

configuration, respectively, then

nda ¼ Cof ½F�N dA and dv ¼ det½F�dV ð2:3Þ

holds. The first part of Eq. (2.3) is the well-known Nanson�s formula. It should be mentioned that the

argument ðF;AdjF; detFÞ, with AdjF ¼ ðCofFÞT, plays an important role in the definition of polycon-

vexity; this will be discussed in detail in Section 3.

2.3. Hyperelasticity and invariance conditions

We consider hyperelastic materials which postulate the existence of a so-called Helmholtz free-energy

function w, assumed to be defined per unit reference volume. Here we focus on the dependence of w solely

in the deformation gradient, i.e. w ¼ ŵwðF; �Þ. The argument ð�Þ in the free energy function denotes addi-

tional tensor arguments, which characterize the anisotropy of the material; they will be discussed in the

following sections. We consider perfect elastic materials, which means that the internal dissipation Dint is
zero for every admissible process. The constitutive equations for the stresses are obtained by evaluation of

the Clausius–Planck inequality, neglecting thermal effects, in the form
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Dint ¼ P : _FF � _ww ¼ ðP � oFwÞ : _FF P 0 ! P ¼ oFw: ð2:4Þ

P characterizes the first Piola–Kirchhoff stress tensor and _FF denotes the material time derivative of the

deformation gradient, which is identical to the material velocity gradient. Furthermore, oF ð�Þ is the ab-

breviation for oð�Þ=oF.
The principle of material frame indifference requires the invariance of the constitutive equation under

superimposed rigid body motions onto the current configuration, i.e. under the mapping x ! Qx the

condition wðFÞ ¼ wðQFÞ holds 8Q 2 SOð3Þ. For the stress response this principle leads with (2.4 second

part) to the invariance relations

SðFÞ ¼ SðQFÞ; QPðFÞ ¼ PðQFÞ; QrðFÞQT ¼ rðQFÞ 8Q 2 SOð3Þ: ð2:5Þ

Reduced constitutive equations which fulfill a priori the principle of material objectivity (2.5) yield e.g. the

functional dependence w ¼ ŵwðCÞ ¼ ŵwðCðF; gÞÞ (see e.g. Truesdell and Noll, 1965). If we assume the free

energy function to be a function of the right Cauchy–Green tensor ŵwðCÞ or of the spatial metric g we obtain

with the chain rule the expressions

S ¼ 2oCŵwðCÞ and s ¼ Jr ¼ 2ogŵwðCðF; gÞÞ ð2:6Þ

(see e.g. Marsden and Hughes, 1983). The Eq. (2.6)2 is the so-called Doyle-Ericksen formula. S, s and r

denote the Second Piola–Kirchhoff stresses, the Kirchhoff stresses and the Cauchy stresses, respectively.

In the case of anisotropy we introduce a material symmetry group Gk with respect to a local reference

configuration, which characterizes the anisotropy class of the material. The elements of Gk are denoted by

the unimodular tensors iQji ¼ 1; . . . ; n. The concept of material symmetry requires that the response be

invariant under transformations with elements of the symmetry group, i.e.

ŵwðFQÞ ¼ ŵwðFÞ 8Q 2 Gk;F: ð2:7Þ

Thus superimposed rotations and reflections on the reference configuration with elements of the material

symmetry group do not influence the behaviour of the anisotropic material. Equivalently, we can write

condition (2.7) in terms of the stress response function

PðFQÞ ¼ PðFÞQ 8Q 2 Gk;F: ð2:8Þ

We say that the function w in (2.7) or P in the latter equation are Gk-invariant functions. Without any

restrictions we set Gk � SOð3Þ, where SOð3Þ characterizes the special orthogonal group. Based on the

mapping X ! QTX for arbitrary rotation tensors Q 2 SOð3Þ we get from the requirement of an isotropic

tensor function rðFÞ ¼ rðFQÞ 8Q 2 SOð3Þ the relations

QTSðFÞQ ¼ SðFQÞ; PðFÞQ ¼ PðFQÞ 8Q 2 SOð3Þ: ð2:9Þ

Thus it is clear that material symmetries impose several restrictions on the form of the constitutive

functions of the anisotropic material. In order to work out the explicit restrictions for the individual
symmetry groups, or more reasonably to point out general forms of the functions which fulfill these re-

strictions, it is necessary to use representation theorems for anisotropic tensor functions. To sum up, the

constitutive expressions must satisfy the combined material frame indifference and the material symmetry

condition, which requires them to be isotropic tensor functions with respect to an extended tensorial ar-

gument list. This topic is discussed in the following section.

2.4. Isotropic tensor functions for anisotropic material response

In this section we point out the main ingredients for deriving isotropic tensor functions for anisotropic

solids. The main idea is the extension of Gk-invariant functions into functions which are invariant under a
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larger group, here the special orthogonal group. This implies that it is in principle possible to transform an
anisotropic constitutive function into an isotropic function through some tensors, the so-called structural

tensors, which reflect the symmetry group of the considered material. The concept of structural tensors was

first introduced in an attractive way with important applications by Boehler in 1978/1979, although some

similar ideas might have been touched on earlier. For a brief overview of representation of tensor functions

see Rychlewski and Zhang (1991). The symmetry group of a material is defined by (2.7) and (2.8). Here we

only consider anisotropic materials which can be characterized by certain directions, lines or planes. That

means that the anisotropy can be described by some unit vectors ia and some second order tensors iM
defined in the reference configuration, in this context we refer to Zheng and Boehler (1994). Fig. 1 illustrates
the preferred directions ia and i~aa :¼ F ia with respect to the reference and current configuration, respec-

tively. In the following, we restrict ourselves to the cases of transverse isotropy and orthotropy, where the

material symmetry can be characterized by a set of structural tensors of second order. Let GM be the in-

variance group of the structural tensors, i.e.

GM :¼ fQ 2 SOð3Þ;Q � n ¼ ng; ð2:10Þ

with n :¼ fiMg and i ¼ 1 for transversely isotropic, and i ¼ 1; 2ð; 3Þ for orthotropic, materials. The

transformations iQji ¼ 1; . . . ; n represent rotations and reflections with respect to preferred directions and

planes. In the following, we skip the index ið�Þ if there is no danger of confusion. The last term in (2.10)
characterizes the mapping n ! Q � n :¼ fQTMQg. If GM � GK , where GK is defined by (2.7) and (2.8), then

the invariance group preserves the characteristics of the anisotropic solid.

Let us assume the existence of a set of Gk-invariant structural tensors n. Then we can transform (2.7) into

a function which is invariant under the special orthogonal group. This leads to a scalar-valued isotropic

tensor function in an extended argument list. That means that rotations superimposed onto the reference

configuration with the mappings X ! QTX and n ! Q � n lead to the condition w ¼ ŵwðF; nÞ ¼
ŵwðFQ;Q � nÞ 8Q 2 SOð3Þ: Due to the concept of material frame indifference we arrive at a further re-

duction of the constitutive equation of the form

w ¼ ŵwðC ; nÞ ¼ ŵwðQTCQ;Q � nÞ 8Q 2 SOð3Þ; ð2:11Þ

which is the definition of an isotropic scalar-valued tensor function in the arguments ðC ; nÞ. For the stresses
we obtain the isotropic tensor-valued tensor function

QTSðC ; nÞQ ¼ SðQTCQ;Q � nÞ 8Q 2 SOð3Þ: ð2:12Þ

It should be noted that the function is anisotropic with respect to C . Furthermore, the relation

QTSðC ; nÞQ ¼ SðQTCQ; nÞ holds for transformations Q 2 Gk and only for these transformations, thus the
set of structural tensors M characterizes the material symmetry as pointed out above. It should be noted

Fig. 1. Preferred directions ia and i~aa in the neighborhoods PB � B and PS � S of the points X 2 B and x 2 S, respectively.
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that if Gk ¼ SOð3Þ the material is isotropic. There are further material symmetries which are finite sub-

groups of SOð3Þ, for the different crystal classes (see e.g. Smith et al., 1963, Spencer, 1971 and the references

therein).

3. Free energy function for transverse isotropic materials

For the explicit formulation of invariant constitutive equations the representation theorems of tensor

functions are used. As discussed in the previous section the governing constitutive equations have to

represent the material symmetries of the body of interest a priori. Furthermore, the minimal number of

independent scalar variables (the set of independent anisotropic mechanical variables) which have to enter

the constitutive expression is required. For a detailed discussion of this topic we refer to Boehler (1987).

3.1. Polynomial basis

For the construction of specific constitutive equations we need the invariants of the deformation tensor

and the additional structural tensor. An irreducible polynomial basis consists of a collection of members,

where none of them can be expressed as a polynomial function of the others. Based on the Hilbert-theorem

there exists for a finite basis of tensors a finite integrity basis (see Weyl, 1946). Transverse isotropy is

characterized by one preferred unit direction a and the material symmetry group is defined by

Gti :¼ fI ;Qða; aÞj0 < a < 2pg; ð3:13Þ

where Qða; aÞ are all rotations about the a-axis. The structural tensor M whose invariance group preserves

the material symmetry group Gti is given by

M :¼ a� a: ð3:14Þ
The mathematical properties of the structural tensor M are given in Appendix A, Lemma A.12. The in-

tegrity bases consist of the traces of products of powers of the argument tensors, the so-called principal

invariants and the mixed invariants. The principal invariants Ik ¼ ÎIkðCÞ, k ¼ 1, 2, 3 of a second order tensor

C are defined as the coefficients of the characteristic polynomial

f ðkÞ ¼ det½k1� C � ¼
X3
k¼0

ð�1ÞkIkkn�k; ð3:15Þ

with I0 ¼ 1 (see also Appendix A, Theorem A.8 and Lemmas A.9 and A.10). The principal invariants of the

considered second order tensor have the explicit expressions

I1 :¼ trC ; I2 :¼ tr½CofC �; I3 :¼ detC : ð3:16Þ
These invariants can also be expressed in terms of the so-called basic invariants Ji, i ¼ 1, 2, 3. They are
defined by the traces of powers of C , i.e.

J1 :¼ trC ; J2 :¼ tr½C2�; J3 :¼ tr½C3�: ð3:17Þ
These quantities are related to the principal invariants by the simple algebraic expressions

J1 ¼ I1; J2 ¼ I21 � 2I2; J3 ¼ I31 � 3I1I2 þ 3I3: ð3:18Þ
The additional invariants, the so-called mixed invariants, to the invariants of a single tensor for two

symmetric second order tensors C and M are

J4 :¼ tr½CM �; J5 :¼ tr½C2M �; J6 :¼ tr½CM2�; J7 :¼ tr½C2M2�; ð3:19Þ
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(see e.g. Spencer, 1971, 1987). Let M be of rank one and let us assume the normalization condition

kMk ¼ 1, then we obtain the identities J6 � J4 and J7 � J5 and we can rule out the terms J6 and J7 from our

considerations. The only remaining basic invariant of the single tensor M under the latter condition is

�IIM :¼ trM ; ð3:20Þ

which is a constant. Note that the higher principal invariants of M, i.e. tr½CofM� and detM, are equal to

zero. Basic properties of the scalar product and tensor product are given in Appendix A, Corollary A.2 and

Lemma A.4, respectively. For the construction of constitutive equations it is necessary to determine the

minimal set of invariants from which all other invariants can be generated. Here we focus on polynomial

invariants. The integrity basis is defined by the set of polynomial invariants which allows the construction

of any polynomial invariant as a polynomial in members of the given set (see e.g. Spencer, 1971). The
polynomial basis for the construction of a specific free energy function w is given by

P1 :¼ fI1; I2; I3; J4; J5; �IIMg or P2 :¼ fJ1; . . . ; J5; �IIMg: ð3:21Þ

The bases (3.21) are invariant under all transformations with elements of Gti. As a result the polynomial

functions in elements of the polynomial basis are also invariant under these transformations. For the free

energy function we assume the general form

w ¼ ŵwðLijLi 2 PjÞ þ c for j ¼ 1 or j ¼ 2: ð3:22Þ

In order to fulfill the non-essential normalization condition wð1Þ ¼ 0 we introduce the constant c 2 R.

3.2. Representation of polyconvex free energy functions

In this section we discuss specific forms of the free energy function w for transverse isotropy in order to

guarantee the existence of minimizers of some variational principles for finite strains. The existence of

minimizers of some variational principles in finite elasticity is based on the concept of quasiconvexity,

introduced by Morrey (1952), which ensures that the functional to be minimized is weakly lower semi-

continuous. This inequality condition is rather complicated to handle since it is an integral inequality. Thus
a more important concept for practical use is the notion of polyconvexity in the sense of Ball (1977a,b) in

this context see also Marsden and Hughes (1983) and Ciarlet (1988). For isotropic material response

functions there exist some models, e.g. the Ogden-, Mooney-Rivlin- and Neo-Hooke-type models, which

satisfy this concept. Furthermore, it can be shown that polyconvexity of the stored energy implies that the

corresponding acoustic tensor is elliptic for all deformations. For finite-valued, continuous functions we

can recapitulate the important implications:

convexity ) polyconvexity ) quasiconvexity ) rank one convexity:

The converse implications are not true. Furthermore, the quasiconvexity of a function ensures that the

associated functional to be minimized is weakly lower semi-continuous and the rank one convexity of a

function ensures that the Euler equations of the associated functional are elliptic (in this context see e.g.

Dacorogna, 1989 and Silhav	yy, 1977).
Now we introduce W 2 C2ðM3	3;RÞ, a given scalar valued energy density. We say that

Definition 3.1 (Polyconvexity). F 7!W ðFÞ is polyconvex if and only if there exists a function

P : M3	3 	M3	3 	 R 7!R (in general non-unique) such that

W ðFÞ ¼ P ðF;AdjF; detFÞ

and the function R19 7!R; ðeXX ; eYY ; eZZÞ 7!PðeXX ; eYY ; eZZÞ is convex for all points X 2 R3.
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In the above definition and in the following we drop the X-dependence of the individual functions if

there is no danger of confusion, i.e. we write W 2 C2ðM3	3;RÞ instead of W 2 C2ðR3 	M3	3;RÞ and

P : M3	3 	M3	3 	 R 7!R instead of P : R3 	M3	3 	M3	3 	 R 7!R in order to arrive at a more compact

notation. The definition of the adjugate of F 2 M3	3 is given in Appendix A, A5–A7 and the properties of
the adjugate are listed in Appendix A, Lemma A.6.

A consequence of the Definition 3.1 for a more restrictive class of energy densities is

Corollary 3.2 (Additive polyconvex functions). Let W ðFÞ ¼ W1ðFÞ þ W2ðAdjFÞ þ W3ðdetFÞ. If Wi , i ¼ 1; 2
are convex in the associated variable respectively and W3 : R

þ 7!R is convex in the associated variable as well,

then W is altogether polyconvex.

The last corollary will be one of our primary tools in constructing polyconvex strain energy functions: we
identify convex functions on M3	3 and R and then take positive combinations of them.

Let w 2 C1
0 ðBÞ denote the set of infinitely differential functions w that vanish on oB.

Definition 3.3 (Quasiconvexity). The elastic free energy is quasiconvex whenever for all B � R3 and all

F 2 M3	3 and all w 2 C1
0 ðBÞ we have

W ðFÞjBj ¼
Z
B

W ðFÞdV 6

Z
B

W ðF þrwÞdV :

Definition 3.4 (Ellipticity). We say that the elastic free energy W ðFÞ ¼ wðCÞ 2 C2ðM3	3;RÞ leads to a
uniformly elliptic equilibrium system whenever the so-called uniform Legendre-Hadamard condition

9cþ > 0 8F 2 M3	3 : 8n; g 2 R3 : D2
FW ðFÞ:ðn � g; n � gÞP cþknk2kgk2

holds. We say that W leads to an elliptic system if and only if the Legendre-Hadamard condition

8F 2 M3	3 : 8n; g 2 R3 : D2
F W ðFÞ:ðn � g; n � gÞP 0

holds. We say that the elastic free energy W is rank-one convex if the function f : R 7!R,

f ðtÞ ¼ W ðF þ tðn � gÞÞ is convex for all F 2 M3	3 and all n; g 2 R3.

The decisive property in the context to be treated here is the following well-known property:

Theorem 3.5 (Polyconvexity implies ellipticity). Let (i) W be polyconvex. Then W is elliptic. Let (ii) W be

sufficiently smooth. Then rank-one convexity and ellipticity are equivalent.

The proof of the last theorem is based on standard results in the calculus of variations (see e.g. Da-

corogna, 1989). We remark that the converse is not true.

To obtain various strain energy terms in order to model specific problems, which permit the matching of
data stemming from experiments we assume an additively decoupled structure of w, i.e.

w ¼
Xn
j¼1

ŵwjðC ;MÞ ¼
Xn
j¼1

ŵwjðC ;CofC ; det C ;MÞ: ð3:23Þ

The formal representation (3.23) second part is of interest with respect to the construction of alternative

polynomial bases; this will be discussed in the following sections. We demand that each term wjjj ¼ 1; ::n
has to satisfy a priori the invariance conditions and the polyconvexity condition. It should be noted that

the formal similarity in the list of arguments (3.23 second part), i.e. ðC ;CofC ; �Þ, with the argument of the
convex function P : M3	3 	M3	3 	 R 7!R of definition 3.1, i.e. ðF;AdjF; �Þ, is a consequence of the
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material objectivity condition. However, it does not suppose any convexity requirements with respect to

ðC ;CofC ; �Þ of course. In the following, we first concentrate on isotropic functions, point out some re-

lations to well-known formulations and then focus on anisotropic terms. The additively decoupled for-

mulation (3.23) in the individual invariants leads with (2.6) to the stress response function

S ¼ 2
ow
oC

¼ 2
Xn
j¼1

X
Li2P1n�IIM

owj

oLi

oLi
oC

: ð3:24Þ

The tensor generators oCLi are independent of the specific form of the free energy function. They only

depend on the symmetry of the material characterized by the introduced structural tensors. Although the

symmetry group for transverse isotropy is completely characterized by the invariance group of M , defined
in (3.14), we introduce an additional dependent structural tensor,

D :¼ 1�M : ð3:25Þ
By a simple calculation we see directly that the invariance group of D is the material symmetry group Gti.

Thus D is a possible structural tensorial quantity instead ofM . The introduction of this additional quantity

is useful for a comprehensive representation and physical interpretation of several terms of the free energy

function.

3.2.1. Isotropic free energy terms

In this section we analyse some isotropic free energy functions which fulfill the polyconvexity condition.

Furthermore, we point out some results for well-known functions. It is sometimes preferable to express

strain energies as a sum of isochoric and volumetric terms. Let F 2 GLð3;RÞ, then we obtain with (2.2)

eCC :¼ C=I
1
3

3 with det½ eCC � ¼ 1: ð3:26Þ

The ansatz for a free energy function is assumed to be of the form

W ðFÞ ¼ Wisoð eCC Þ þ WvolðdetFÞ: ð3:27Þ

We will show that this ansatz is compatible with the requirement of polyconvexity. Let for example
W1ðAÞ ¼ hH ; 1i and define isoðFÞ ¼ eCC . Then

Wisoð eCC Þ ¼ W1ðisoðFÞÞ ¼
kFk2

ðdetFÞ
2
3

for detF > 0

1 for detF 6 0

(
ð3:28Þ

and W ðFÞ ¼ W1ðisoðFÞÞ is a polyconvex function (however not of the additive type, Corollary 3.2) which we

proceed to show in Appendix C, Lemma C.1. For the remainder let us agree to extend functions W , which

are naturally only defined on the set detF > 0 to M3	3 by setting W ¼ 1 for arguments with detF 6 0 as

we did in the last example. It is clear by such an extension that W can never be convex, for it is supported on

a non-convex set only. However, this extension is compatible with the requirement of polyconvexity since

P ðxÞ ¼ f ðxÞ x > 0

1 x6 0

�
ð3:29Þ

is a convex function whenever f is convex on Rþ. Some polyconvex, isotropic free energy terms which we

will use for the identification with the linearized standard moduli at the reference configuration and for the

simulations are

w1 :¼ a1I1; w2 :¼ a2I21 ; w3 :¼ a3

I1
I1=33

; w4 :¼ a4

I21
I1=33

ð3:30Þ
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with all ai > 0. The first and second terms are powers of traces of the right Cauchy–Green tensor, while the

third one is an isochoric term and the last one is the product of the functions of the invariant expressions
appearing in w1 and w3.

For the physical interpretation of the isotropic invariant function I1=I
1=3
3 we consider a cylinder of unit

length and unit diameter (see Fig. 2a). A deformation described by the deformation gradient F ¼
1þ ðk � 1Þa� a, with kak ¼ 1, leads to a final configuration as outlined by the outer cylinder in Fig. 2b.

The isochoric part of F, i.e. the term eFF :¼ ðdetFÞ�1=3
F, and thus the quadratic function in the remainder

I1=I
1=3
3 ¼ tr eCC ¼ keFFk2, controls only the isochoric part of the deformation. In the considered example only

the shaded volume in Fig. 2b is affected by this invariant. For the anisotropic case we will discuss this from

a different point of view.
The convexity of Ik1 , i.e. F 7! ½trðFTFÞ�k, kP 1 can be proved by the positivity of the second derivative.

Proof. (1) With the identity ½trðFTFÞ�k ¼ kFk2k we obtain

DF kFk2k
� �

:H ¼ 2kkFk2k�2hF;Hi

D2
F kFk2k
� �

:ðH ;HÞ ¼ 2k kFk2k�2hH ;Hi
�

þ ð2k � 2ÞkFk2k�4hF;Hi2
�
> 0:

The proof of the polyconvexity of the terms Ik1=I
1=3
3 for kP 1 is given in Lemma C.3, Eq. (1) (see the

Appendix). In an analogous manner we construct free energy terms in the second principal invariant I2. For
the following analysis we choose the four terms

w5 :¼ g1I2; w6 :¼ g2I
2
2 ; w7 :¼ g3

I2
I1=33

; w8 :¼ g4

I22
I1=33

ð3:31Þ

with gi P 0. The interpretation of these terms is similar to the functions presented in (3.30) with the

modification that the surface deformation of the considered infinitesimal volume element is controlled; this

can be seen directly by I2 ¼ trCofC ¼ kCofFk2 and taking (2.3 first part) into account. The proof of
polyconvexity of (3.31) is straightforward by replacing F with CofF in Proof (1). Furthermore, terms in

traces of powers of C are also convex, i.e.

Fig. 2. Physical interpretation of the polyconvex invariant function I1=I
1=3
3 .
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F 7! tr½ðFTFÞk� with kP 1

is a convex mapping. This function allows the direct usage of the basic invariants (3.17) for the construction

of polyconvex free energy functions.

Proof. (2) Set C ¼ FTF, then the first and second derivatives with respect to C are

DC tr½C k�
	 


:H ¼ DC hC k; 1i
	 


:H ¼ khC k�1;Hi;

D2
C tr½C k�
	 


:ðH ;HÞ ¼ kðk � 1ÞhC k�2H ;HiP 0:

Thus DCðtr½C k�Þ ¼ kC k�1 2 P Sym and D2
Cðtr½C

k�Þ:ðH ;HÞP 0 which allows us to apply Lemma B.5; in this

regard see the Appendix. �

As examples for some volumetric terms in detF or detC we consider the expressions

w9 :¼ d1I3; w10 :¼ �d2 ln
ffiffiffiffi
I3

p
; w11 :¼ d3 I3



þ 1

I3

�
;

w12 :¼ d4ðI3 � 1Þ2; w13 :¼ d5

1

I3

ð3:32Þ

with di P 0. Further examples for polyconvex volumetric free energy terms are

F 7! detC þ 1
detC

� 2
	 
k

with kP 1

F 7! ðdetCÞp þ 1
ðdetCÞp � 2

� �k
with kP 1; pP 1

2

F 7!ð
ffiffiffiffiffiffiffiffiffiffiffiffi
detC

p
� 1Þk with kP 1

F 7!ðdetC � ln½detC �Þ
F 7!ðdetC � ln½detC � þ ðln½detC �Þ2Þ

9>>>>>>>=>>>>>>>;
: ð3:33Þ

On the natural domain of definition detF > 0 the given functions are convex in the variable detF. The
terms in (3.33) are each polyconvex and lead to a stress free reference configuration. Furthermore, the
following isochoric terms are polyconvex and stress free in the natural state:

F 7! kFk2k

ðdetFÞ
2k
3

� 3k

 !i

with iP 1; kP 1

F 7! kAdjFk3k

ðdetFÞ2k
� ð3

ffiffiffi
3

p
Þk

 !j

with jP 1; kP 1

F 7! exp
kFk2k

ðdetFÞ
2k
3

� 3k

 !i" #
� 1 with iP 1; kP 1

F 7! exp
kAdjFk3k

ðdetFÞ2k
� ð3

ffiffiffi
3

p
Þk

 !j" #
� 1 with jP 1; kP 1

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

: ð3:34Þ

For the proof of this statement see the Appendix, Lemma C.5 and Corollary C.6. The treatment of the
isotropic case has been taken from Hartmann and Neff (2002). For the explicit derivations of the stress

functions and the moduli we choose from (3.34) the terms
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w14 :¼ x1

I1
I1=33

 
� 3

!2

; w15 :¼ x2

I32
I23



� ð3

ffiffiffi
3

p
Þ2
�

w16 :¼ x3 exp
I1
I1=33

" 
� 3

#
� 1

!
; w17 :¼ x4 exp

I32
I23

�

� ð3

ffiffiffi
3

p
Þ2
�
� 1

� ð3:35Þ

with xi P 0. The above isotropic terms of the type

W ðFÞ ¼ kFk2

ðdetFÞ
2
3

 
� 3

!i

with iP 1

have the convenient property that W ð1Þ ¼ 0 in the unstressed configuration and W ðFÞP 0. Hence the

reference configuration is automatically stress-free. This contrasts with known polyconvex functions such

as compressible Mooney-Rivlin materials, where only by a judicious choice of parameters can the reference

configuration be made stress-free. The polyconvexity of these terms is shown in Hartmann and Neff (2002).

Of course, the terms are objective and meet various growth conditions necessary for the successful appli-
cation of the direct methods of variations to prove the existence of solutions for a corresponding finite

elasticity boundary value problem.

The stresses related to the above free energy terms can be obtained by exploiting (3.24). All terms are

formulated in the principal invariants I1, I2, I3, so we arrive at

S1 :¼ 2
Xn
j¼1

owj

oI1

oI1
oC

�
þ
owj

oI2

oI2
oC

þ
owj

oI3

oI3
oC

�
: ð3:36Þ

With the derivatives of the principal invariants with respect to C , which are given by

oI1
oC

¼ G�1

oI3
oC

¼ det½C �C�1

oI2
oC

¼ oðdet½C �tr½C�1�Þ
oC

¼ tr½C�1� det½C �C�1 � det½C �C�2

9>>>>>>=>>>>>>;
; ð3:37Þ

we obtain with CofC ¼ det½C �C�1 the stresses in the form

S1 ¼ 2
Xn
j¼1

owj

oI1
G�1

�
þ
owj

oI2
ðtr½C�1�Cof ½C � � C�1Cof ½C �Þ þ

owj

oI3
CofC

�
: ð3:38Þ

Multiplying the Cayley-Hamilton theorem for the characteristic polynomial of the argument tensor with

C�1 leads with tr½CofC � ¼ trC�1 detC to the expression

tr½C�1�Cof ½C � � C�1Cof ½C � ¼ tr½C �G�1 � G�1CG�1; ð3:39Þ

which simplifies (3.38). In this manner we arrive at the representation

S1 ¼ 2
Xn
j¼1

owj

oI1


�
þ
owj

oI2
I1

�
G�1 �

owj

oI2
G�1CG�1 þ

owj

oI3
CofC

�
: ð3:40Þ

The material tangent moduli are denoted in index-representation by CABCD
1 :¼ 2oCCDS

AB
1 . Based on the

formula (3.40) we arrive with o2w=ðoIi oIjÞ ¼ o2w=ðoIj oIiÞ at
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CABCD
1 ¼ 4

Xn
j¼1

o2wj

oI1 oI1
GABGCD

"
þ

o2wj

oI2 oI2
fI1G � CgABfI1G � CgCD þ

o2wj

oI3 oI3
fCofCgABfCofCgCD

þ
o2wj

oI2 oI1
½GABfI1G � CgCD þ fI1G � CgABGCD� þ

o2wj

oI3 oI1
½GABfCofCgCD þ fCofCgABGCD�

þ
o2wj

oI3 oI2
½fI1G � CgABfCofCgCD þ fCofCgABfI1G � CgCD� þ

owj

oI2
½GABGCD � GACGBD�

þ
owj

oI3
I3½fC�1gABfC�1gCD � fC�1gACfC�1gBD�

#
: ð3:41Þ

In (3.41) fCgCD is an abbreviation for the index representation of G�1CG�1 in order to arrive at a compact

formulation.

3.2.2. Anisotropic free energy terms

For the anisotropic part we construct several terms in an analogous way to that pointed out above, see

also Schr€ooder and Neff (2001). Before starting the construction and discussion of several polyconvex,

transversely isotropic functions we have a look at often-used direct extensions of the small strain theory to

the case of finite deformations by substituting the linear strain tensor with the Green–Lagrange strain

tensor E :¼ 1
2
ðC � GÞ. A typical form of such an extension is the quadratic function in E e.g.

wE :¼ ~cc1ðtrEÞ2 þ ~cc2tr½E2� þ ~cc3trEtr½ME� þ ~cc4ðtr½ME�Þ2 þ ~cc5tr½ME2�: ð3:42Þ
Since formulations like (3.42) in E are a priori not polyconvex and not elliptic, we consider a different

formulation in the right Cauchy–Green tensor which has some superficially similar characteristics to wE. So

let us consider the quadratic free energy function in terms of the elements of a polynomial basis in C and

M, i.e.

wC :¼ �cc1I21 þ �cc2J2 þ �cc3I1J4 þ �cc4J 2
4 þ �cc5J5 þ �cc6fG þ �cc7fM ; ð3:43Þ

where fG and fM are functions which we introduce in order to fulfill the condition of a stress-free reference
configuration with respect to the tensor generators G�1 and M, respectively. The first and second terms are

polyconvex, see the proofs in the last section. The term I1J4 does not fulfill the polyconvexity condition, i.e.

the expression

F 7! trðFTFMÞtrðFTFÞ ¼ tr½CM �trC ¼ I1J4

is not polyconvex, because it is not even elliptic and hence not quasiconvex.

Proof. (3) The last equation can be expressed in the form

tr½FTFM �tr½FTF� ¼ kFk2kFak2R3 :

Calculating the second differential with respect to the deformation gradient yields

D2
F ðkFk

2kFak2R3Þ:ðH ;HÞ ¼ 8hF;HihFa;HaiR3 þ 2kFak2R3kHk2 þ 2kFk2kHak2R3 :

We see that this expression is in general non-positive (take F, H in diagonal form), which excludes con-

vexity. However, it is possible to show the non-ellipticity as well. Take

Fn :¼
1
n �1 0

0 1
n 0

0 0 1
n

0@ 1A; n ¼
1

0

0

0@ 1A; g ¼
1

n
0

0@ 1A; a ¼
1

0

0

0@ 1A
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and H ¼ n � g. This yields

D2
F ðkFk

2kFak2R3Þ:ðn � g; n � gÞ ¼ 8hF; n � gihFa; n � gaiR3 þ 2kFak2R3kn � gk2 þ 2kFk2kn � gak2R3

¼ 8
1

n



� n
�
1

n
þ 2

1

n2
ð1þ n2Þ þ 2 3

1

n2



þ 1

�
¼ 16

n2
� 4:

If we choose n > 2, then we get

D2
F ðkFk

2kFak2R3Þ:ðn � g; n � gÞ < 0:

Thus, the non-ellipticity of the function I1J4 is shown. �

Now we analyse expressions in powers of the basic invariant J4. The polynomial functions

F 7!ðtr½FTFM �Þk ¼ ðtr½CM �Þk ¼ Jk4 with kP 1

are polyconvex. For the proof of this we check the convexity of Jk4 with respect to F.

Proof. (4) The first and second differential of the expression ðtr½FTFM �Þk ¼ hF;FMik with respect to F are

given by

DF hF;FMik
� �

:H ¼ khF;FMik�1 hF;HMið þ hH ;FMiÞ ¼ 2khF;FMik�1hF;HMi

D2
F hF;FMik
� �

:ðH ;HÞ ¼ 4kðk � 1ÞhF;FMik�2hFM ;Hi2 þ 2khF;FMik�1hH ;HMiP 0;

respectively. For the evaluation of the single terms see Lemma A.12, Eq. (15). �

In (3.44) we summarized some functions in the invariants J4 and I3 which are polyconvex,

w18 :¼ b1J4; w19 :¼ b2J
2
4 ; w20 :¼ b3

J4
I1=33

; w21 :¼ b4

J 2
4

I1=33

ð3:44Þ

with bi P 0. The term w18 characterizes the square of the stretch and w19 the quartic stretch in the preferred

direction. With the function J4=I
1=3
3 ¼ eCC : M we can cover the square of the stretch in direction a due to the

isochoric part of the deformation. The last term in (3.44) is not decoupled with respect to the volumetric

and isochoric deformations. Other possibilities for higher order terms are given in Lemma C.3, Eq. (2).

Now we analyse terms in the mixed invariant J5. The following term is not elliptic and hence non-

quasiconvex:

F 7! tr½FTFFTFM� ¼ tr½C2M � ¼ J5:

Proof. (5) The forms of the individual expressions are

tr½FTFFTFM � ¼ kFTFak2R3 :

First we compute the second derivative of the function with respect to F

D2
F ðkFTFak2R3Þ:ðH ;HÞ ¼ 2hFTFa;HTHaiR3 þ kðFTH þHTFÞak2R3 :

J. Schr€ooder, P. Neff / International Journal of Solids and Structures 40 (2003) 401–445 415



Set H ¼ n � g with knkR3 ¼ kgkR3 ¼ 1. This yields after some manipulations

D2
F ðkFTFak2R3Þ:ðn � g; n � gÞ ¼ 2hFa;FgiR3hg; aiR3

þ hg; ai2R3kFTnk2R3 þ hFTn; ai2R3 þ 2hFTn; giR3hg; aiR3hFTn; aiR3 :

Take the explicit expressions

Fn :¼
1 0 0
0 2 0

0 0 1
n

0@ 1A; n ¼
0

0

1

0@ 1A kFT
n nk

2 ¼ 1

n2
; a ¼ 1ffiffiffi

3
p

1

1

1

0@ 1A; g ¼ 1ffiffiffi
3

p
1

�1

1

0@ 1A:

This leads to

hFna;FngiR3 ¼ �1þ 1

3n2
; ha; giR3 ¼ 1

3

and altogether we have for some reasonable n

D2
F ðkFT

nFnak2R3Þ:ðn � g; n � gÞ6


� 2þ 2

3n2

�
1

3
þ 4

n
< 0:

Observe, that the isotropic counterpart tr½C2� ¼ kFTFk2 is a convex function of F (see Proof (1)). �

Up to now we can conclude that we cannot use the invariant J5 and the polynomial invariant I1J4 as

single terms for the construction of a free energy term. To take into account quadratic expressions of these
terms within the ansatz functions we remember that Cof ½C � is a quadratic function in the right Cauchy–

Green tensor. Furthermore, it seems reasonable from a physical point of view to construct a polynomial

mixed invariant, which reflects the deformation of a preferred area element of an infinitesimal volume of the

considered body. With this geometric motivation we start with the characteristic polynomial of the matrix

C (see the Cayley-Hamilton Theorem A.8). Multiplication of the characteristic polynomial with C�1M
yields with CofC ¼ AdjC

C2M � I1CM þ I2M � Cof ½C �M ¼ 0: ð3:45Þ
Taking the trace of the Eq. (3.45) leads with the abbreviations (3.16) and (3.19) to the expression

K1 :¼ tr½Cof ½C �M � ¼ J5 � I1J4 þ I2�IIM ; ð3:46Þ
which is a polyconvex polynomial function in the non-polyconvex individual terms J5 and J4I1. The proof of
the convexity of the powers of K1 is straightforward by replacing F with CofF in Proof (4). Thus K1

represents a quadratic and polyconvex expression in C which replaces the non-elliptic term J5. Based on the

definition (3.46 first part) of K1 we can give a rather simple geometric interpretation of this polynomial

invariant. Starting from

K1 ¼ tr½Cof ½C �M � ¼ Cof ½FTF� : a� a ¼ ðCof ½F�aÞðCof ½F�aÞ ¼ kCof ½F�ak2; ð3:47Þ
we see that

ffiffiffiffiffi
K1

p
¼ kCof ½F�ak controls the deformation of the area element with unit normal a. Consider the

deformation of a unit cube with F ¼ diagðk1; k2; k3Þ where k3 represents the stretch in preferred direction,

then we arrive at
ffiffiffiffiffi
K1

p
¼ k1k2. An illustration of this simple example is given in Fig. 3a where k1k2 is

represented by the shaded area.
Let us now specify some representative polyconvex functions in the invariants K1 and I3:

w22 :¼ c1K1; w23 :¼ c2K
2
1 ; w24 :¼ c5K

3
1 ;

w25 :¼ c3
K1

I1=33

; w26 :¼ c6
K2

1

I2=33

ð3:48Þ
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with ci > 0. It should be noted that K1=I
1=3
3 and K2

1=I
2=3
3 are coupled volumetric–isochoric terms. In Proof (4)

we have seen that powers of tr½CM � are polyconvex; these functions represent powers of the stretch in the

preferred direction. As such it seems to be elemental that stretches in the isotropy plane also make sense as

specific ansatz functions. For the construction of such further mixed terms we use the redundant structural
tensor (3.25). We obtain the polynomial invariant

K2 :¼ tr½CD� ¼ I1 � J4; ð3:49Þ

which represents the square stretch in the isotropy plane relative to the undeformed state. Of course, it is

not necessary to introduce this redundant tensorial quantity with regard to the polynomial basis, but for the

analysis of the convexity properties it is helpful. With the relation

Kk
2 ¼ ðtr½FTFð1�MÞ�Þk ¼ ðkFk2 � kFak2R3Þk; ð3:50Þ

we may apply the same reasoning as in Proof (4). Observe that

ðkFk2 � kFak2R3ÞP 0 if kakR3 ¼ 1

(see also the discussion in the Appendix Lemma C.2). With the same physical motivations as used for the

construction of K1 and K2 we are now looking for a polynomial invariant which controls the area elements
of an infinitesimal volume, characterized by normals lying in the isotropy plane. Using CofF instead of F in

(3.50) we obtain for the exponent k ¼ 1 the expression

K3 :¼ tr½Cof ½C �D� ¼ I1J4 � J5 þ I1ð1� �IIMÞ ¼ I1J4 � J5: ð3:51Þ

As K1, K3 represents a quadratic and polyconvex expression in C . In an analogous way to the geometric

interpretation of K1 we can interpret the polynomial invariant K3. After some algebraic manipulations of

(3.51) we obtain

K3 ¼ tr½Cof ½C �D� ¼ kCof ½F�k2 � kCof ½F�ak2; ð3:52Þ

we see that
ffiffiffiffiffi
K3

p
controls the deformation of an area element with a normal in the isotropy plane, i.e. with a

normal perpendicular to a. Consider again the deformation of a unit cube with F ¼ diagðk1; k2; k3Þ with k3

being the stretch in the preferred direction. Thus k1; k2 present the stretches of the edges of the unit cube in

the isotropy plane and we arrive at
ffiffiffiffiffi
K3

p
¼ k3ðk2

2 þ k2
1Þ

1=2
. An illustration of this is given in Fig. 3b; the area

element k3ðk2
2 þ k2

1Þ
1=2

controlled by K3 is shaded. Some possible polyconvex functions in K2, K3 and I3 are
listed in (3.53)

Fig. 3. Geometric interpretation of the the polynomial invariants: (a) K1 and (b) K3.
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w27 :¼ /1K2; w28 :¼ /2K
2
2 ; w29 :¼ /3K3; w30 :¼ /4K

2
3 ;

w31 :¼ /5

K2

I1=33

; w32 :¼ /6

K3

I1=33

; w33 :¼ /7

K2
2

I2=33

; w34 :¼ /8

K2
3

I1=33

ð3:53Þ

with /i > 0. For the proof of the polyconvexity of wi; i ¼ 31; . . . ; 34 see Lemma C.3. Before considering

further, more complicated, functions we give a physical interpretation of the terms in K1=I
1=3
3 and K3=I

1=3
3 .

As a simple example we consider a process with detF ¼ 1 which is constant over the considered domain.

The isochoric part of the deformation of the cylinder shown in Fig. 4 is given by eFF ¼ diagðk2=3; k�1=3; k�1=3Þ;
let

wiso :¼ cþkCof eFFk2 ¼ cþðk�4=3 þ 2k2=3Þ

be one part of the associated isotropic free energy. On the other hand we consider an anisotropic energy

term of the form wa :¼ cþ1 K1=I
1=3
3 þ cþ2 K3=I

1=3
3 . For the assumed isochoric process wa can be rewritten as

wa ¼ cþ1 kCof eFFak2 þ cþ2 ðkCof eFFk2 � kCof eFFak2Þ ¼ cþ1 k�4=3 þ 2cþ2 k2=3:

This equation states that the energy associated with the isochoric deformation can be weighted with respect

to the deformation of the area elements characterized by normals in preferred direction and within the

isotropy plane. So in general it should be possible to obtain at least one energetic equivalent isochoric

deformation which differs from the one in Fig. 4a. Set e.g. cþ2 ¼ acþ and cþ1 ¼ f ðaÞcþ with a; f ðaÞ 2 Rþ.

Then we arrive with the condition of equivalence of the energetic terms wiso ¼ wa at

f ðaÞ ¼ 1þ 2�kk2ð1� aÞ;

with a 2 ð0; 1Þ. Here �kk characterizes a fixed value of the deformation for which the energetic equivalence is

postulated, thus it is no variable. A visualization of such an equivalent configuration is depicted in Fig. 4b.
For a ¼ 1 the parameters are cþ ¼ cþ1 ¼ cþ2 and we arrive at the isochoric representation.

Examples for further polynomial invariants in elements of the polynomial basisP1 are listed in (3.59). As

shown in Proof 3, the term J4I1 ¼ tr½MC �trC is not elliptic and hence not polyconvex. Let us now consider

an ansatz function of the form

F 7!kFk4 þ kFk2kFak2 ¼ I21 þ I1J4; ð3:54Þ

Fig. 4. Interpretation of the polynomial invariants K1=I
1=3
3 and K3=I

1=3
3 for an assumed isochoric deformation process. Picture (a) shows

the isochoric deformation of the uniaxial stretched cylinder of Fig. 2 and Picture (b) represents an energetic weighting of the parts

controlled by K1=I
1=3
3 and K3=I

1=3
3 .
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which is convex in F. The proof of this is given in Lemma C.2, Eq. 4. Replacing F with CofF yields yet

other polyconvex functions, so we obtain

w35 :¼ j1fðtrCÞ2 þ tr½MC �trCg
w36 :¼ j2fðtrCofCÞ2 þ tr½MCofC �trCofCg

)
: ð3:55Þ

It should be noted that tr½MCofC �trCofC alone is also not elliptic. In an analogous way we can construct

polyconvex functions which include the non-elliptic terms tr½DC �trC and tr½DCofC �trCofC . Consider the

convex mapping

F 7!2kFk4 þ kFk2kFð1�MÞk2; ð3:56Þ

or alternatively in CofF instead of F. For the proof, see Lemma C.2, Eq. 5. Thus we obtain

w37 :¼ j4f2ðtrCÞ2 þ tr½DC �trCg
w38 :¼ j5f2ðtrCofCÞ2 þ tr½DCofC �trCofCg

)
: ð3:57Þ

On the other hand the difference of some polyconvex functions could be of interest in order to get further

ansatz functions. For this reason let us define the free energy terms

w39 :¼ j6faþ1 ðtrCÞ � bþ1 ðtr½MC �Þg
w40 :¼ j7faþ2 ðtrCofCÞ � bþ2 ðtr½MCofC �Þg

�
with

aþ1 P bþ1
aþ2 P bþ2

�
; ð3:58Þ

with the positive constants aþi , b
þ
i , i ¼ 1, 2. The convexity of these equations with respect to F and CofF is

obvious, due to the convexity of tr½CD� ¼ trC � tr½CM � and tr½CofCD� ¼ trCofC � tr½MCofC �. The ex-

pressions of the functions wi; i ¼ 35; . . . ; 40 in the elements of the polynomial basis P1 are given in (3.59),
where we have chosen the constants aþ1 ¼ 3, bþ1 ¼ 2, aþ2 ¼ 3, bþ2 ¼ 2.

w35 :¼ j1ðI21 þ J4I1Þ; w36 :¼ j2ð2I22 þ I2J5 � I1I2J4Þ

w37 :¼ j4ð3I21 � I1J4Þ; w38 :¼ j5ð2I22 þ I1I2J4 � I2J5Þ

w39 :¼ j6ð3I1 � 2J4Þ; w40 :¼ j7ðI2 � 2J5 þ 2I1J4Þ

ð3:59Þ

with ji > 0. The proof of the convexity condition for the individual terms is given in the Appendix (see

Lemma C.2). Examples of generic anisotropic exponential polyconvex functions are given in Appendix C,

Lemma C.4. In this context see also the examples of some representative non-elliptic functions in Appendix
C, Lemmas C.8 and C.9. With the variety of polyconvex, isotropic and transversely isotropic free energy

functions derived above, it should be possible to model a wide range of different physical stress–strain

relations. The stresses appear with (3.40) in the form

S :¼ S1 þ 2
Xn
j¼1

owj

oJ4
M

�
þ
owj

oJ5
ðCM þMCÞ

�
: ð3:60Þ

The material tangent moduli C appear with (3.41) in index-representation in the form
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CABCD ¼ CABCD
1 þ 4

Xn
j¼1

o2wj

oJ4 oJ4
MABMCD

"
þ

o2wj

oJ5 oJ5
fCM þMCgABfCM þMCgCD

þ
o2wj

oI1 oJ4
½GABMCD þMABGCD� þ

o2wj

oI1 oJ5
½GABfCM þMCgCD þ fCM þMCgABGCD�

þ
o2wj

oI2 oJ4
½fI1G � CgABMCD þMABfI1G � CgCD� þ

o2wj

oI2 oJ5
½fI1G � CgABfCM þMCgCD

þ fCM þMCgABfI1G � CgCD� þ
o2wj

oI3 oJ4
½fCofCgABMCD þMABfCofCgCD�

þ
o2wj

oI3 oJ5
½fCofCgABfCM þMCgCD þ fCM þMCgABfCofCgCD�

þ
o2wj

oJ4 oJ5
½fCM þMCgABMCD þMABfCM þMCgCD� þ

owj

oJ5
½GACMBD þMACGBD�

#
:

ð3:61Þ
Here terms like ð�ÞAB characterize the contravariant index representations of the individual tensor ex-

pressions, e.g. fCM þMCgAB denotes GACCCDMDB þMACCCDGDB.

3.3. Spatial formulation

For isotropic material response the Kirchhoff stresses s can be derived directly by the derivative of the
free energy function with respect to the Finger tensor b :¼ FFT (see e.g. Miehe, 1994). For the anisotropic

case the Kirchhoff stresses and associated spatial moduli c can be computed via a push-forward operation

of the second Piola–Kirchhoff stresses S and the associated moduli C, i.e.

sab :¼ F a
A F

b
B S

AB and cabcd :¼ F a
A F

b
B F

c
CF

d
DC

ABCD; ð3:62Þ
or by a direct evaluation of the Doyle Ericksen formula (2.6 second part). Regarding C as a function of the

point values of the deformation gradient F and the spatial metric g, we are left with C ¼ bCC ðF; gÞ (see

Marsden and Hughes, 1983). The only modification of the stress functions (3.60) in combination with (3.40)
is referred to the tensor generators, because the derivatives of the free energy function with respect to the

invariants remain unchanged. Thus we only need the derivatives of the invariants with respect to the co-

variant metric coefficients, e.g. we obtain for

oI1
ogab

¼ oðF c
AF

d
B gcdG

ABÞ
ogab

¼ F a
A F

b
BG

AB :¼ bab;

which is the index representation of the Finger tensor b. In an analogous way we get the derivatives of the

other invariants. In direct notation we obtain the expressions

oI1
og

¼ otr½ bCC ðF; gÞ�
og

¼ b

oI2
og

¼ oðI21 � J2Þ=2
og

¼ I1b�
1

2

otr½ð bCC ðF; gÞÞ2�
og

¼ I1b� b2

oI3
og

¼ oI3
oC

:
o bCC ðF; gÞ

og
¼ I3g�1

oJ4
og

¼ oð bCC ðF; gÞÞ : M
og

¼ ~aa� ~aa

oJ5
og

¼ otr½ð bCC ðF; gÞÞ2M�
og

¼ b~aa� b~aa

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

: ð3:63Þ
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In this direct representation we have dropped the obvious dependence of the quantities with respect to the

metric tensors. Finally the Kirchhoff stresses appear in the form

s :¼ 2
Xn
j¼1

owj

oI1


�
þ
owj

oI2
I1

�
b�

owj

oI2
b2 þ

owj

oI3
I3g�1 þ

owj

oJ4
~aa� ~aaþ

owj

oJ5
b~aa� b~aa

�
: ð3:64Þ

The spatial moduli can be derived by c ¼ 2ogsðCðF; gÞÞ. For this derivation we have to take into account

the intrinsic dependence of b2 with respect to g, i.e. the index representation of the square of the Finger

tensor is given by bacgcdbdb. The computation of the spatial moduli is straightforward and therefore omitted
here.

4. Stress free reference configuration and linearization

In this section we analyse the free energy functions with respect to the natural state condition, i.e. the

stresses have to be zero in the reference configuration. Furthermore, we are interested in the linearized stress

quantities near the reference configuration in order to identify moduli obtained by the invariant formu-
lation with some well-known linear transversely isotropic moduli. The natural state is characterized by

F ¼ 1 and the invariants have the values

I1 ¼ 3; I2 ¼ 3; I3 ¼ 1; J4 ¼ J5 ¼ �IIM ¼ trM ¼ 1: ð4:65Þ

Consequently the stress condition for the natural state, i.e. Sð1Þ ¼ 0, leads with (3.40) and (3.60) to the

equation

2
Xn
j¼1

owj

oI1


�
þ 2

owj

oI2
þ
owj

oI3

�
1þ

owj

oJ4



þ 2

owj

oJ5

�
M

�
¼ 0: ð4:66Þ

The linearized moduli C0 at the reference configuration are obtained by linearization of the stress response

functions (3.40) and (3.60). Thus we obtain with the Green–Lagrange strain tensor E :¼ ð1=2ÞðC � 1Þ, the
equation

Lin½S� ¼ Sð1Þ þ C0 : Lin½E� with C0 :¼ 2oCSj1 ¼ 4o2Cwj1: ð4:67Þ
The terms Lin½S� ¼: �rr present the linearized stress tensor and Lin½E� ¼: e the linearized strain tensor in the

reference configuration, respectively. The classical matrix notation of transverse isotropic material response

in the case of small strains is given with the X3-axis as axis of symmetry by the linear relationship

�rr11

�rr22

�rr33

�rr12

�rr23

�rr13

26666664

37777775 ¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 1
2
ðC11 � C12Þ 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

26666664

37777775
e11
e22
e33
2e12
2e23
2e13

26666664

37777775: ð4:68Þ

From (4.67) it follows that the linearized moduli are obtained by evaluation of (3.61) at C ¼ 1. The lin-

earization of (3.61) with (3.41) leads to

CABCD
0 ¼ c1G

ABGCD þ c2fGABGCD � GACGBDg þ c3M
ABMCD þ c4½GABMCD þMABGCD�

þ c5ðGACMBD þMACGBDÞ ð4:69Þ
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with the abbreviations

c1 ¼ 4
Pn

j¼1

 
o2wj

oI1oI1
þ 4

o2wj

oI2oI2
þ

o2wj

oI3oI3
þ 4

o2wj

oI2oI1
þ 2

o2wj

oI3oI1
þ 4

o2wj

oI3oI2

!

c2 ¼ 4
Pn

j¼1

owj

oI2
þ
owj

oI3

 !

c3 ¼ 4
Pn

j¼1

o2wj

oJ4oJ4
þ 4

o2wj

oJ5oJ5
þ 4

o2wj

oJ4oJ5


 �
c4 ¼ 4

Pn
j¼1

o2wj

oI1oJ4
þ 2

o2wj

oI1oJ5
þ 2

o2wj

oI2oJ4
þ 4

o2wj

oI2oJ5
þ

o2wj

oI3oJ4
þ 2

o2wj

oI3oJ5

 !

c5 ¼ 4
Pn

j¼1

owj

oJ5

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

: ð4:70Þ

With the X3-axis as the axis of symmetry we have a ¼ ð0; 0; 1ÞT, M ¼ diagð0; 0; 1Þ and with the same index

arrangement as in (4.68) we obtain from (4.69) the linearized moduli

C0 ¼

c1 c1 þ c2 c1 þ c2 þ c4 0 0 0

c1 þ c2 c1 c1 þ c2 þ c4 0 0 0

c1 þ c2 þ c4 c1 þ c2 þ c4 c1 þ c3 þ 2ðc4 þ c5Þ 0 0 0

0 0 0
�c2
2

0 0

0 0 0 0
c5 � c2

2
0

0 0 0 0 0
c5 � c2

2

266666666664

377777777775
: ð4:71Þ

From Eq. (4.66) and the comparison of (4.71) with the matrix representation of the classical moduli (4.68)

we obtain seven equations for the identification of the linearized moduli of the invariant formulation. This

is consistent with the minimal number of ansatz functions for a quadratic free energy function introduced

in (3.43). We need a minimum of five parameters (functions) to identify the individual moduli and two

parameters (functions) to fulfill the condition of a stress-free reference configuration.

Remark. As a special case we obtain a family of Ogden-type materials for isotropic material response (see

Ciarlet, 1988). We choose a compressible Mooney-Rivlin model of the form

wiso :¼ a1tr½C � þ g1tr½CofC � þ d1J 2 � d2 lnðJÞ; ð4:72Þ

with J 2 ¼ detC . The two isotropic moduli near a natural state are characterized by

C13 ¼ C12; C33 ¼ C11; C44 ¼
1

2
ðC11 � C12Þ: ð4:73Þ

From the condition of a stress-free reference configuration (4.66) we obtain the equation

2a1 þ 4g1 þ 2d1 � d2 ¼ 0: ð4:74Þ

The relations between the Ogden-parameters and the isotropic moduli are

4g1 þ 4d1 ¼ C12 and 2d2 ¼ C11: ð4:75Þ
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The solution of the three equations (4.74) and (4.75) for the four material parameters ðd1; d2; a1; g1Þ 2 Rþ is

a1 :¼ ½C11 þ ðn � 2ÞC12�=4
g1 :¼ ð1� nÞC12=4
d1 :¼ nC12=4
d2 :¼ C11=2

9>>=>>; with n 2 ð0; 1Þ: ð4:76Þ

Let us introduce the expressions of the isotropic moduli in terms of the Lam	ee constants k and l, then we

get C11 ¼ k þ 2l and C12 ¼ k. We see that it is always possible to choose a set of positive parameters for

k > 0 and l > 0 that satisfy (4.76) with ðd1; d2; a1; g1Þ 2 Rþ (see Ciarlet, 1988, pages 185–190). As a second

example we consider a compressible Neo-Hookean model characterized by (4.72) with g1 ¼ 0. In this case

we obtain the identification from (4.76) for n ¼ 1, which means that we need a minimum of three material

parameters in order to fulfill the above mentioned conditions.

5. Extension to orthotropic material response

In this section we discuss the construction of polyconvex orthotropic free-energy functions. Orthotropic

materials are characterized by symmetry relations with respect to three orthogonal planes. The corre-

sponding preferred directions are chosen as the intersections of these planes and are denoted by the vectors
a, b and c with unit length. Thus ða; b; cÞ represents an orthonormal privileged frame. The material sym-

metry group is defined by

Go :¼ fI ;S1;S2;S3g; ð5:77Þ
where S1, S2, S3 are the reflections with respect to the basis planes ðb; cÞ, ðc; aÞ and ða; bÞ, respectively.
Based on this, we obtain for this symmetry group the structural tensors

1M :¼ a� a; 2M :¼ b� b and 3M :¼ c� c; ð5:78Þ
which represent the symmetry group (5.77). The structural tensors fulfill the conditions

iMp ¼ iM; triM ¼ 1; iM jM ¼ 0 for i 6¼ j; i; j ¼ 1; 2; 3
ð1MC þ C1MÞ þ ð2MC þ C2MÞ þ ð3MC þ C3MÞ ¼ 2C
tr½1MC � þ tr½2MC � þ tr½3MC � ¼ trC

9=; ð5:79Þ

(see e.g. Boehler, 1987). Due to the fact that the sum of the three structural tensors yields
P3

i¼1
iM ¼ 1 we

may discard 3M from the set of structural tensors (5.78). So the integrity basis consists of

P3 :¼ fI1; I2; I3; J4; J5; J6; J7; �II1M ;�II2Mg or P4 :¼ fJ1; . . . ; J7; �II1M ;�II2Mg: ð5:80Þ
The principal invariants ðI1; I2; I3Þ and the basic invariants ðJ1; J2; J3Þ are defined in (3.16) and (3.17),
respectively. The irreducible mixed invariants are given by

J4 :¼ tr½1MC � J5 :¼ tr½1MC2�; J6 :¼ tr½2MC �; J7 :¼ tr½2MC2� ð5:81Þ
(see e.g. Spencer, 1971). Furthermore, the remaining trivial invariants are defined by �II1M :¼ tr1M and
�II2M :¼ tr2M. For the construction of the free energy function we assume the form

w ¼
X
k

ŵwkðiijii 2 PjÞ þ c for j ¼ 3 or j ¼ 4; ð5:82Þ

where each function wk has to satisfy the polyconvexity condition a priori. All proposed polyconvex

functions in the above sections in terms of C and M can be used by interchanging M with 1M, 2M or 3M .

This holds also for the terms in D; for this it seems advantageous to introduce the tensors iD ¼ 1� iM for

i ¼ 1, 2, 3. Based on this approach we obtain a variety of polyconvex functions in a straightforward
manner, where the expressions in 3M and iD, i ¼ 1, 2, 3 can easily be expressed as polynomial functions in
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terms of the elements of the integrity bases P3 or P4. The proofs of the polyconvexity of functions gen-

erated in this manner are already given above. Up to now we have only proposed individual polyconvex

functions wk in terms of ðC ; 1MÞ or ðC ; 2MÞ. For a general formulation we also need ansatz functions

which include multiplicative terms in the mixed invariants with respect to different structural tensors. Often
used terms in classical formulations, such as

J4J6 ¼ tr½1MC �tr½2MC � ¼ kFak2kFbk2; ð5:83Þ
are not polyconvex. The proof of the non-convexity of this term is straightforward (in this context see also

Remark B.8, Appendix B). To overcome this problem we consider powers of linear convex combinations of

positive polyconvex functions. Consider two convex functions P1ðX ; Y ÞP 0 and P2ðX ; Y ÞP 0, then func-

tions of the form

P :¼ ½kP1ðX ; Y Þ þ ð1� kÞP2ðX ; Y Þ�q; k 2 ð0; 1Þ and q 2 Nþ ð5:84Þ
are polyconvex (see Corollary B.7). Thus we are able to construct a variety of free energy terms which
involve multiplicative coupled terms in the mixed invariants associated to different structural tensors, e.g.

½ktr½iMC � þ ð1� kÞtr½jMC ��q
½ktr½iMC � þ ð1� kÞtr½jMCofC ��q

�
with k 2 ð0; 1Þ; i 6¼ j; q 2 Nþ; ð5:85Þ

with i, j ¼ 1, 2, 3. If we choose e.g. q ¼ 2, then (5.85) first part leads with i ¼ 1 and j ¼ 2 to the invariant

representation

k2J 2
4 þ 2kð1� kÞJ4J6 þ ð1� kÞ2J 2

6 with k 2 ð0; 1Þ; ð5:86Þ

which has a multiplicative term in the mixed invariants of the traces of the product of ðC ; 1MÞ and ðC ; 2MÞ.
Thus it is possible, in principal, to construct a wide variety of functions which are related in some sense to

the classical formulations of orthotropic materials in the invariant setting.

6. Variational formulation and finite element discretization

In the following we give a brief summary of the corresponding boundary value problem and finite

element formulation in the material description. Let B be the reference body of interest which is bounded

by the surface oB. The surface is partitioned into two disjointed parts oB ¼ oBu
S
oBt with oBu

T
oBt ¼ ;.

The equation of balance of linear momentum for the static case is governed by the first Piola-Krichhoff

stresses P ¼ FS and the body force �ff in the reference configuration

Div½FS� þ �ff ¼ 0: ð6:87Þ
The Dirichlet boundary conditions and the Neumann boundary conditions are given by

u ¼ �uu on oBu and t ¼ �tt ¼ PN on oBt; ð6:88Þ
respectively. Here N represents the unit exterior normal to the boundary surface oBt. With standard ar-

guments of variational calculus we arrive at the variational problem

Gðu; duÞ ¼
Z
B

S : dE dV þ Gext with Gext :¼ �
Z
B

�ff dudV �
Z
oBt

�ttdudA; ð6:89Þ

where dE :¼ 1
2
ðdFTF þ FTdFÞ characterizes the virtual Green–Lagrangian strain tensor in terms of the

virtual deformation gradient dF :¼ Graddu. The equation of principle of virtual work (6.89) for a static

equilibrium state of the considered body requires G ¼ 0. For the solution of this non-linear equation we
apply a standard Newton iteration scheme, which requires the consistent linearization of (6.89) in order to
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guarantee the quadratic convergence rate near the solution. Since the stress tensor S is symmetric, the linear

increment of G denoted by DGext is given by

DGðu; du;DuÞ :¼
Z
B

ðdE : C : DE þ dFSDFTÞdV ; ð6:90Þ

where DE :¼ 1
2
ðDFTF þ FTDFÞ denotes the incremental Green–Lagrange strain tensor as a function of the

incremental deformation gradient DF :¼ GradDu. The spatial discretization of the considered body
B !

Snele
e¼1 B

e with nele finite elements Be leads within a standard displacement approximation

u ¼
Pnel

I¼1 N
Id I , du ¼

Pnel

I¼1 N
Idd I , and Du ¼

Pnel

I¼1 N
IDd I , of the actual-, virtual-, and incremental-dis-

placement fields, respectively, to a set of algebraic equations of the form which can be solved for the so-

lution point d. For a detailed discussion of this point we refer to the standard text books (Zienkiewicz and

Taylor, 2000, Hughes, 1987 and others).

7. Numerical examples

In this section we analyse a three-dimensional tapered cantilever and a two-dimensional perforated plate

with centered hole. In the first example we point out the influence of the anisotropy and in the second

example we discuss the influence of the orientation of the preferred direction and compare the results for

two sets of material parameters. The corresponding linearized moduli at the reference configuration are

given for both material sets within the invariant formulation and in the classical notation.

7.1. 3D-analysis of a tapered cantilever

In this example we consider a tapered cantilever clamped on the left hand side and subjected to a

shearing deformation kF in vertical direction with kFk ¼ 1 on the right hand side. Here k denotes the load

parameter. The system and the boundary conditions are depicted in Fig. 5a and b shows the reference

configuration, discretized with 20	 20	 5 eight-noded standard displacement elements in horizontal,

vertical and thickness direction. The thickness of the specimen is set to 1.

Fig. 5. Tapered Cantilever. (a) System and boundary conditions; (b) discretization with 20	 20	 5 ¼ 2000 eight-noded brick ele-

ments.
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The chosen free energy function w consists of seven additive terms ~wwj, in detail

w ¼
X7
j¼1

~wwjðI1; I2; I3; J4; J5Þ with ~wwjjj ¼ 1; . . . ; 7 ¼ wiji ¼ 1; 13; 19; 25; 30; 31; 33; ð7:91Þ

respectively. The number of ansatz functions is consistent with the treatment of the compressible Neo-

Hookean material in the isotropic case, which requires three terms, see the end of the remark in Section 4.
In this context see also the interpretation of Eq. (3.43). It should be noted that the function

~ww1ðI1Þ ¼ a1trC ð7:92Þ

is linear in the invariant I1. As such it only effects the Second Piola–Kirchhoff stresses, i.e. ~ww1ðI1Þ leads to a

positive volumetric stress contribution. An anisotropic counterpart is w16ðJ4Þ; this linear term in J4 leads to
an anisotropic stress contribution with respect to the tensor generator M. The remaining parts are

~ww2ðI3Þ ¼ d51= detC
~ww3ðJ4Þ ¼ b2ðtr½MC �Þ2
~ww4ðI1; I2; I3; J4; J5Þ ¼ c3tr½MCofC �=ðdetCÞ1=3
~ww5ðI1; J4; J5Þ ¼ /4ðtr½DCofC �Þ2
~ww6ðI1; I3; J4; J5Þ ¼ /5tr½DC �=ðdetCÞ1=3
~ww7ðI1; I3; J4; J5Þ ¼ /7ðtr½DC �Þ2=ðdetCÞ1=3

9>>>>>>>=>>>>>>>;
: ð7:93Þ

With these ansatz functions we obtain from (4.66) the explicit expression

2a1



þ 4

3
c3 þ 8/4 þ

2

3
/5 þ

16

3
/7 � 2d5

�
1þ ð4b2 � 2c3 þ 8/4 � 2/5 � 8/7ÞM ¼ 0; ð7:94Þ

for the vanishing stresses in the reference configuration. The coefficients of the linearized moduli (4.70) are

given by

c1 ¼ 8/4 þ
40

9
/7 þ 8d5 �

8

9
c3 þ

8

9
/5

c2 ¼
8

3
c3 � 4d5 �

8

3
/5 �

16

3
/7

c3 ¼ 8b2 þ 8/4 þ 8/7

c4 ¼ � 8

3
c3 þ 24/4 �

8

3
/7 þ

4

3
/5

c5 ¼ 4c3 � 16/4

9>>>>>>>>>=>>>>>>>>>;
: ð7:95Þ

The chosen material parameters of the polyconvex free energy function in the invariant setting are

a1 ¼ 2:6875; d5 ¼ 136:41; b2 ¼ 112:21; c3 ¼ 80:393
/4 ¼ 5:7233; /5 ¼ 162:15; /7 ¼ 1:1920

�
: ð7:96Þ

The free energy function (7.91) with the parameters (7.96) will be referred to as material parameter set 1

(MS 1) in the following example.

Let the X3-axis be the preferred direction; then the corresponding linearized moduli are

C11 ! 1215:0; C12 ! 445:0; C13 ! 581:0; C33 ! 2900:0; C44 ! 500:0: ð7:97Þ

The two-dimensional version of this test in the linear elastic range is often referred to as the Cook�s
membrane problem. It is a standard test for bending-dominated problems. In the isotropic case the de-
formed structure would be dominated by in-plane deformations. Here we are interested in the influence of

the anisotropic constitutive laws. For the simulation the preferred direction was set to a ¼ ð1; 1; 1ÞT=
ffiffiffi
3

p
and
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the load parameter is increased by increments Dk ¼ 1 until a final value of k ¼ 400 is reached. Fig. 6a–c

depicts the deformed structures of the beam at k ¼ 130, k ¼ 270 and k ¼ 400, respectively. In contrast to an
isotropic material the anisotropic one leads to a salient out-of-plane bending deformation. This enormous

out-of-plane bending is of course initiated by the orientation of the preferred direction.

7.2. Perforated plate with centered hole

In this example we consider a rectangular plate with a centered hole with two different free energy
functions and three different orientations for each. The preferred directions are assumed to be in the plane

of the plate. The dimensions of the specimen are given in Fig. 7 and the thickness is set to t ¼ 1.

The system is subjected to tension in horizontal direction. The left and right boundaries are pulled up to

a final length of the specimen of 42 units. Furthermore, we fixed the vertical degrees of freedom for the

outer boundary of the plate. The analysis is performed under plane strain conditions and the specimen is

discretized with 1800 four-noded standard displacement elements. The three different orientations of the

preferred direction are

Fig. 6. Tapered Cantilever. Deformed configurations for selected load levels: (a) at k ¼ 130, (b) at k ¼ 270 and (c) at k ¼ 400.

Fig. 7. Geometric properties of the rectangular plate with centered hole.
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a1 ¼ ð1; 1; 0ÞT=
ffiffiffi
2

p
; a2 ¼ ð0:5; 1; 0ÞT=

ffiffiffiffiffiffiffiffiffi
1:25

p
and a3 ¼ ð1; 0; 0ÞT: ð7:98Þ

The chosen free energy function w consists again of seven additive terms ~wwj and we set

w ¼
X7
j¼1

~wwjðI1; I2; I3; J4; J5Þ with ~wwjjj ¼ 1; . . . ; 7 ¼ wiji ¼ 1; 10; 24; 28; 30; 32; 33: ð7:99Þ

In the next equation we summarize the explicit expressions of the chosen ansatz functions:

~ww1ðI1Þ ¼ a1trC
~ww2ðI3Þ ¼ �d2 ln½

ffiffiffiffiffiffiffiffiffiffiffiffi
detC

p
�

~ww3ðI1; I2; J4; J5Þ ¼ c5ðtr½MCofC �Þ3
~ww4ðI1; J4Þ ¼ /2ðtr½DC �Þ2
~ww5ðI1; J4; J5Þ ¼ /4ðtr½DCofC �Þ2
~ww6ðI1; I3; J4; J5Þ ¼ /6tr½DCofC �=ðdetCÞ1=3
~ww7ðI1; I3; J4; J5Þ ¼ /7ðtr½DC �Þ2=ðdetCÞ1=3

9>>>>>>>>>>>=>>>>>>>>>>>;
: ð7:100Þ

For the simulations we choose for the material parameters in (7.100) the values

a1 ¼ 14:0625; d2 ¼ 325:0; c5 ¼ 3:64583
/2 ¼ 3:515625; /4 ¼ 20:3125; /6 ¼ 4:6875; /7 ¼ 15:234375

�
: ð7:101Þ

The free energy function (7.99) with the parameters (7.101) is referred to as the material parameter set 2

(MS 2). Choosing the X3-axis as the preferred direction we obtain the corresponding linearized moduli at

the reference configuration

Fig. 8. Tension of a rectangular plate with centered hole. Deformed configurations for material parameter set MS 1: (a) a1, (b) a2 and

(c) a3, and material parameter set MS 2: (d) a1, (e) a2 and (f) a3, respectively.
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C11 ! 1000:0; C12 ! 300:0; C13 ! 600:0; C33 ! 1400:0; C44 ! 200:0: ð7:102Þ

Fig. 8a–c depicts the deformed configurations at the final state for the material parameter set MS 1

and Fig. 8d–f those for the material parameter set MS 2 for three different orientations ai, i ¼ 1, 2, 3 of

the rotational symmetry axis. For the non-aligned preferred direction with respect to the symmetry

planes of the plate the hole is deformed to a rotated ellipse, see Fig. 8a, b, d, e. For the orientation a3
the principal axes of the ellipse coincide with the symmetry planes of the specimen and the loading con-

ditions. A remarkable difference for the two material sets can be seen by comparing the expansion of the

hole. For the first parameter set the area of the final hole is much smaller than it is for the second parameter
set.

8. Conclusion

In this paper we have proposed the formulation of polyconvex transversely isotropic hyperelasticity in
an invariant setting. The constitutive models are based on the Clausius–Planck inequality, so the ther-

modynamic consistency is guaranteed. The main goal of this work has been the construction of polyconvex

anisotropic functions in the sense of Ball in order to guarantee the existence of minimizers of variational

principles in finite elasticity. For the free energy we have assumed an additive structure, i.e. it has been built

by the sum of additively decoupled terms. Each of these individual isotropic and anisotropic ansatz

functions fulfills the polyconvexity condition. The proofs of the polyconvexity for all proposed functions

have been given in detail and we have pointed out that several transversely isotropic free energies proposed

in the literature do not meet this condition. Furthermore, we have shown that the often used polynomial
mixed invariants J5 and I1J4 are not polyconvex. The construction of some polyconvex polynomial mixed

invariants has been motivated by certain physical interpretations and realized by use of the Cayley-

Hamilton theorem. One interesting result is the polyconvexity of the powers of the quadratic mixed in-

variant with respect to the cofactor of the right Cauchy–Green tensor. This term controls the deformation

of a preferred area element of an infinitesimal volume of the body. For the simulation of some model

problems the individual free energy terms can be additively merged so that in this class a wide variety of

ratios of anisotropy can be modeled. An extension of the proposed formulation to the case of orthotropic

material response is given. Here a variety of terms are already given by interchanging the one preferred
direction of the transversely isotropic case with the three perpendicular preferred directions of the ortho-

tropic material. Additional terms have been constructed by the powers of linear convex combinations of

polyconvex functions.

Appendix A. Proof of basic properties

In this part of the paper we investigate the polyconvexity conditions alluded to above. We focus our
attention on constitutive issues rather than existence theorems in Sobolev spaces. Therefore we do not

address growth conditions on the free energy. They can be met by a judicious choice of appearing para-

meters. Whereas the whole formalism derived up to now could be based on considerations pertaining to the

right Cauchy–Green tensor C ¼ F TF the investigation of conditions like polyconvexity, quasiconvexity and

ellipticity are directly based on expressions defined on the deformation gradient F . Since we are interested

in applications to finite elasticity we restrict ourselves to three space dimensions. Our aim here is to leave

the presentation sufficiently selfcontained.

We begin with some simple observations which facilitate the further proofs allowing henceforth to re-
strict indicial calculations to a minimum.
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Lemma A.1 (Scalar product). Let A, B 2 M3	3 then

hA;Bi :¼ trðABTÞ
defines a scalar product on M3	3 with induced Frobenius matrix norm

kAk2 ¼ hA;Ai:

Proof. Standard. �

Corollary A.2 (Properties of the scalar product). Let A, B, C 2 M3	3 and n 2 R3 then

1. kABk6 kAkkBk.
2. kA:nkR3 6 kAkknkR3 .

3. hA;BCi ¼ hACT;Bi ¼ hBTA;Ci.

Proof. Standard. �

Lemma A.3. Let A 2 GLð3;RÞ. Then

8F 2 M3	3 kAF k2 P kminðATAÞkF k2:

Proof. Some easy algebra. �

Let g, n 2 R3, then g � n 2 M3	3 and ðg � nÞij ¼ ginj. This yields the following

Lemma A.4 (Basic properties of the tensor product). Let A 2 M3	3, v 2 R3 and g � n 2 M3	3 then

1. ðg � nÞ:v ¼ ghn; viR3 .

2. ðg � nÞT ¼ n � g.

3. traceðg � nÞ ¼ hg; niR3 .

4. traceðg � gÞ ¼ kgk2R3 .

5. kg � nk2 ¼ kgk2R3knk2R3 .

6. hg � n; ðg � nÞTi ¼ hg � n; ðn � gÞi ¼ hg; ni2R3 P 0.

7. traceððg � nÞ2ÞÞ ¼ ðtraceðg � nÞÞ2.
8. kðg � nÞT þ ðg � nÞk2 P 2kgk2R3knk2R3 .

9. Aðg � nÞ ¼ A:g � n.

10. ðg � nÞA ¼ g � AT:n.

11. Aðg � nÞAT ¼ A:g � A:n.

12. rankðg � nÞ ¼ 1.

13. For every matrix A 2 M3	3 with rankðAÞ ¼ 1 there exist vectors g, n 2 R3 such that A ¼ g � n.

14. B ¼ 1þ g � n ) B�1 ¼ 1� 1
1þhg;ni g � n if hg; ni 6¼ 1.
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A.1. Adjugate and determinant

Definition A.5 (Adjugate AdjF ¼ CofðF ÞT).

DðAdjF Þ:H ¼ AdjF hF �T ;Hi1
(

� HF �1
)
; ðA:1Þ

D2ðAdjF Þ:ðH ;HÞ ¼ 2AdjH ; ðA:2Þ

since AdjF is a quadratic expression. The same expansion can be done with the determinant. For H 2 M3	3

we get after some computations

detð1þ HÞ ¼ 1þ trðHÞ þ trðAdjHÞ þ detH :

Lemma A.6 (Properties of the Adjugate). Let A, B, P 2 Glð3;RÞ and Q 2 Oð3Þ. Then we have:

1. Adj ðn � gÞ ¼ 0.

2. Adj ð1þ n � gÞ ¼ 1þ hn; gi1� n � g.

3. Adj ðABÞ ¼ AdjB AdjA.

4. AdjAT ¼ ðAdjAÞT.
5. AdjAA�1 ¼ detA1.
6. Adj ðP�1AP Þ ¼ P�1AdjAP , hence Adj is an isotropic tensor function.

7. Adj ðA�1Þ ¼ ðAdjAÞ�1
.

8. Let D be a diagonal matrix, then AdjD ¼
k2k3 0 0

0 k1k3 0

0 0 k1k2

0@ 1A.

9. traceðAdjDÞ ¼ k2k3 þ k1k3 þ k1k2.

10. traceðAdj ðP�1AP ÞÞ ¼ traceðAdjAÞ.
11. kAdj ðQ�1AQÞk2 ¼ kAdjAk2.
12. hAdjF TF ; 1i ¼ kAdjF k2.
13. For Q 2 Oð3Þ : Adj ðQF Þ ¼ ðAdjF ÞQT and kAdj ðQF Þk ¼ kAdjF k.

Remark A.7. The above properties carry over to non-invertible matrices as well.

Theorem A.8 (Cayley-Hamilton). Let A 2 M3	3. Then A is solution of its characteristic polynomial

det k1� Að Þ ¼ 0, i.e.

0 ¼ k3 � traceðAÞk2 þ traceðAdjAÞk � detAk0

which means

0 ¼ A3 � traceðAÞA2 þ traceðAdjAÞA� detA1: ðA:3Þ

Proof. Standard exercise. �

Lemma A.9 (Invariants). For all real diagonalizable A 2 M3	3 we set

I1ðAÞ :¼ trðAÞ ¼ k1 þ k2 þ k3

I2ðAÞ :¼ trðAdjAÞ ¼ k1k2 þ k2k3 þ k1k3

I3ðAÞ :¼ detA ¼ k1k2k3:
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Because of Theorem A.8 this implies

trðF Þ2 ¼ trðF 2Þ þ 2trðAdjF Þ

ðk1 þ k2 þ k3Þ2 ¼ k2
1 þ k2

2 þ k2
3 þ 2ðk1k2 þ k2k3 þ k1k3Þ: �

Lemma A.10 (Coefficients of the characteristic polynomial). Let A be real diagonalizable and assume that

detAP 0. Then we have

I21 ðAÞP 3I2ðAÞ

I22 ðAÞP 3I1ðAÞI3ðAÞ:

Proof. Young�s inequality shows that kikj 6 ð1=2Þk2
i þ ð1=2Þk2

j . Therefore k2
1 þ k2

2 þ k2
3 P k1k2 þ k2k3 þ k1k3.

Hence

ðk1 þ k2 þ k3Þ2 ¼ ðk2
1 þ k2

2 þ k2
3Þ þ 2ðk1k2 þ k2k3 þ k1k3ÞP 3ðk1k2 þ k2k3 þ k1k3Þ

which proves I1ðAÞ2 P 3I2ðAÞ. In order to prove the second statement note that we may assume kiðAÞ 6¼ 0

without loss of generality since otherwise the statement is true anyway. Let therefore detA 6¼ 0. Then the

inverse A�1 2 M3	3 exists and with the first statement we know I1ðA�1Þ2 P 3I2ðA�1Þ. Moreover k̂kðA�1Þi ¼
1=kðAÞi. Therefore

1

k1



þ 1

k2

þ 1

k3

�2

P 3
1

k1k2



þ 1

k2k3

þ 1

k3k1

�
k1k2 þ k2k3 þ k1k3

k1k2k3


 �2

P 3
k1 þ k2 þ k3

k1k2k3


 �
ðk1k2 þ k2k3 þ k1k3Þ2 P 3ðk1 þ k2 þ k3Þðk1k2k3Þ

which is just I2ðAÞ2 P 3I1ðAÞI3ðAÞ. �

Corollary A.11 (Estimates between kF k, kAdjF k and det F ). Let F 2 M3	3. Then we have

kF k3 P 3
ffiffiffi
3

p
det F

kF k2 P
ffiffiffi
3

p
kAdjF k

kAdjF k3 P 3
ffiffiffi
3

p
ðdet F Þ2

kF k2 ¼ hF TF ; 1i6
ffiffiffi
3

p
kF TF k:

Proof. Set A ¼ F TF . The symmetry of A ensures the applicability of the previous Lemma A.10. Thus

I1ðAÞ ¼ I1ðF TF Þ ¼ trðF TF Þ ¼ kF k2

I2ðAÞ ¼ I2ðF TF Þ ¼ trðAdj ðF TF ÞÞ ¼ trðAdjFAdjF TÞ ¼ kAdjF k2

I3ðAÞ ¼ I3ðF TF Þ ¼ det F TF ¼ ðdet F Þ2

432 J. Schr€ooder, P. Neff / International Journal of Solids and Structures 40 (2003) 401–445



and also

I21 ðAÞP 3I2ðAÞ () kF k2 P
ffiffiffi
3

p
kAdjF k

I22 ðAÞP 3I1ðAÞI3ðAÞ () kAdjF k2 P
ffiffiffi
3

p
kF k det F :

The last two lines lead immediately to the second statement. The last statement is only a simple algebraic

estimate. �

Lemma A.12 (Properties of the anisotropy structural tensor M). Let g 2 R3 with kgk ¼ 1 and define

M ¼ g � g. Then the following statements hold:

1. MT ¼ M .

2. M is positive semi-definite.

3. MTM ¼ M .

4. trðMÞ ¼ 1.

5. M2 ¼ M .

6. kMk2 ¼ 1.

7. k1�Mk2 ¼ 2.

8. ð1�MÞð1�MÞ ¼ 1�M .

9. ð1�MÞTð1�MÞ ¼ 1�M .

10. ð1�MÞ is positive semi-definite.

11. rankðMÞ ¼ 1.

12. AdjM ¼ 0.

13. rankð1�MÞ ¼ 2 and Adjð1�MÞ 6¼ 0.

14. Adjð1�MÞ ¼ M .

15. hH ;H :MiP 0.

Lemma A.13 (Formal 2nd derivative of WðF Þ :¼ W ðF TF Þ). Let W : P Symð3Þ 7!R. Then the second deriv-

ative of WðF Þ :¼ W ðF TF Þ verifies

D2WðF Þ:ðH ;HÞ ¼ 2hoCW ðF TF Þ;HTHi þ o2CW ðF TF Þ:ðF TH þ HTF ; F TH þ HTF Þ

Proof. Standard exercise. �

Appendix B. General convexity conditions

Definition B.1 (Convexity). Let K be a convex set and let W : K 7!R. We say that W is convex if

W ðkF1 þ ð1� kÞF2Þ6 kW ðF1Þ þ ð1� kÞW ðF2Þ
for all F1, F2 2 K and k 2 ð0; 1Þ.

Remark B.2.Observe that in this definition it is necessary to have the functionW be defined on a convex setK.

Lemma B.3 (2nd derivative and convexity). Let K be a convex set and let W : K 7!R be two times differ-

entiable. Then the following statements are equivalent.

1. W is convex.

2. D2W ðF Þ:ðH ;HÞP 0 8F 2 K, 8H 2 LinðKÞ,

where LinðKÞ is the linear hull of K.
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Proof. Rockafellar (1970), page 27. �

Remark B.4. In order that W : K 7!R be convex it is not sufficient to assume only

D2W ðF Þ:ðH ;HÞP 0

for all F 2 K, 8H 2 K. Since for example with W : P Sym 7!R, W ðCÞ ¼ detC we have that K ¼ P Sym is a

convex set (cone) and

D2W ðCÞ:ðH ;HÞ ¼ 2hC;AdjHiP 0

for C, H 2 P Sym, but W ðCÞ ¼ detC is not convex as a function of C.

Lemma B.5 (Convexity on M3	3 and P Symð3Þ). Let C 2 P Symð3Þ and W : P Symð3Þ 7!R and assume that

8H 2 Symð3Þ : D2
CwðCÞ:ðH ;HÞP 0 and DCwðCÞ 2 P Sym0ð3Þ. Then the function

W : M3	3 7!R; F 7!W ðF Þ :¼ wðF TF Þ ðB:1Þ
is convex.

Proof. Use Lemma A.13 for the second derivative of W and observe that

LinðP SymÞ ¼ Sym:

Apply then basic properties of the scalar product. �

Lemma B.6 (Convexity of the square). Let P : Rn 7!R be convex and PðZÞP 0. Then the function

Z 2 Rn 7! ½P ðZÞ�½P ðZÞ�
is convex.

Proof. Assume first that P is a smooth function. The second differential of EðZÞ ¼ P ðZÞP ðZÞ can be easily

calculated. We get

DZEðZÞ:H ¼ P ðZÞDZP ðZÞ:H þ DZP ðZÞ:HP ðZÞ
D2
ZEðZÞ:ðH ;HÞ ¼ 2 P ðZÞD2

ZP ðZÞ:ðH ;HÞ
	

þ DZPðZÞ:HDZP ðZÞ:H


P 0:

Hence EðZÞ is convex. In the non-smooth case we proceed as follows:

EðkZ1 þ ð1� kÞZ2Þ ¼ ½P ðkZ1 þ ð1� kÞZ2Þ�½PðkZ1 þ ð1� kÞZ2Þ�:

The assumed convexity of P shows that

½P ðkZ1 þ ð1� kÞZ2Þ�6 ½kP ðZ1Þ þ ð1� kÞP ðZ2Þ�:

Since the square function is a monotone increasing function for positive values and assuming that

½kP ðZ1Þ þ ð1� kÞPðZ2Þ� is positive we get the estimate

EðkZ1 þ ð1� kÞZ2Þ6 kP ðZ1Þ½ þ ð1� kÞP ðZ2Þ�2:
However, since the square function is itself convex we may proceed to write

EðkZ1 þ ð1� kÞZ2Þ6 kP ðZ1Þ2 þ ð1� kÞP ðZ2Þ2 ¼ kEðZ1Þ þ ð1� kÞEðZ2Þ:
The proof is complete. �
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Corollary B.7. Let P : Rn 7!R be convex and assume that P ðZÞP 0. Then the function

Z 2 Rn 7! ½P ðZÞ�p; pP 1

is convex.

Proof. The same ideas as before carry over to this situation. �

Remark B.8 (Nonconvexity of mixed products). Let Pi : Rn 7!R, i ¼ 1, 2 be convex and assume Pi P 0. Then

the function

Z 2 Rn 7! ½P1ðZÞ�½P2ðZÞ�
is in general non-convex.

Lemma B.9 (Convexity and monotone composition). Let P : Rn 7!R be convex and let m : R 7!R be convex

and monotone increasing. Then the function Rn 7!R, X 7!mðPðX ÞÞ is convex.

Proof. A direct check of the convexity condition. �

Appendix C. Convexity of special terms

Lemma C.1 (Isochoric terms). Let W ðF Þ ¼ kF k2= det F 2
3. Then W is polyconvex.

Proof. We investigate first the convexity of the function P : Rþ 	 R 7!R, P ðx; yÞ ¼ f ðxÞgðyÞ. The matrix of

second derivatives is of course

D2P ðx; yÞ ¼ f 00ðxÞgðyÞ f 0ðxÞg0ðyÞ
f 0ðxÞg0ðyÞ f ðxÞg00ðyÞ


 �
:

If f , g are positive, smooth and convex then we have f 00ðxÞgðyÞP 0 and detD2P ðx; yÞ ¼ f 00ðxÞgðyÞf ðxÞ	
g00ðyÞ � ðf 0ðxÞg0ðxÞÞ2. Observe that P is convex, if D2P is positive definite by Lemma B.3. In our situation

D2P is positive definite, if f 00ðxÞgðyÞP 0 and detD2P ðx; yÞP 0. Thus we must guarantee that

f 00ðxÞgðyÞf ðxÞg00ðyÞP ðf 0ðxÞg0ðxÞÞ2.
Let a > 0 and pP 2. We choose f ðxÞ ¼ x�a and gðyÞ ¼ yp. Then

f 00ðxÞgðyÞf ðxÞg00ðyÞ ¼ aða þ 1Þx�ð2þaÞypx�apðp � 1Þyp�2

and

ðf 0ðxÞg0ðxÞÞ2 ¼ ð�ax�ðaþ1Þpyp�1Þ2 ¼ a2x�2ðaþ1Þp2y2ðp�1Þ:

We arrive at the condition that

a þ 1

a
P

p
p � 1

: ðC:1Þ

The larger one chooses p, the better for the choice of a. Notably Pðx; yÞ ¼ ð1=xaÞyp is convex for a ¼ 2=3
and p ¼ 2. We set

bWW ðF ; nÞ ¼ P ðn; kF kÞ ¼ kF k2

n
2
3

:
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We check the convexity of bWW ðF ; nÞ. Thus

bWW ðkF1 þ ð1� kÞF2; kn1 þ ð1� kÞn2Þ ¼ P ðkn1 þ ð1� kÞn2; kkF1 þ ð1� kÞF2kÞ ¼
kkF1 þ ð1� kÞF2k2

ðkn1 þ ð1� kÞn2Þ
2
3

and the monotonicity of the square function for positive arguments yields

bWW ðkF1 þ ð1� kÞF2; kn1 þ ð1� kÞn2Þ6
ðkkF1k þ ð1� kÞkF2kÞ2

ðkn1 þ ð1� kÞn2Þ
2
3

¼ Pðkn1 þ ð1� kÞn2; kkF1k þ ð1� kÞkF2kÞ:

Since by assumption P is convex, we getbWW ðkF1 þ ð1� kÞF2; kn1 þ ð1� kÞn2Þ6 kP ðn1; kF1kÞ þ ð1� kÞP ðn2; kF2kÞ

¼ k bWW ðF1; n1Þ þ ð1� kÞ bWW ðF2; n2Þ:

Now recall the extension of W to all of M3	3 and use (3.29). Thus we have shown that bWW is convex on the
convex set M3	3 	 Rþ and convexly extended to M3	3 	 R. The proof is complete (see also Dacorogna,

1989, page 140). �

Lemma C.2 (Convex terms). Let X 2 M3	3 and M ¼ g � g. Then the following terms are each convex as

functions in X:

1. X 7! ½trðX TXMÞ�k; kP 1.

2. X 7! ½trðX TX ð1�MÞÞ�k; kP 1.
3. X 7! ½trðX TXMX TXMÞ�k; kP 1.

4. X 7! ½trðX TX Þ�2 þ trðX TX ÞtrðX TXMÞ.
5. X 7!2½trðX TX Þ�2 þ trðX TX ÞtrðX TX ð1�MÞÞ.
6. X 7! 1

2
½trðX TX Þ�2 þ trðX TXX TXMÞ,

and the statements remain true if X is changed into X T since linear transformations leave convexity properties

invariant.

Proof. 1. ½trðX TXMÞ�k ¼ hX ;XMik. We compute the second differential:

DX hX ;XMik
� �

:H ¼ khX ;XMik�1 hX ;HMið þ hH ;XMiÞ ¼ 2khX ;XMik�1hX ;HMi

D2
X hX ;XMik
� �

:ðH ;HÞ ¼ 4kðk � 1ÞhX ;XMik�2hXM ;Hi2 þ 2khX ;XMik�1hH ;HMiP 0

in this context see also A.12 Eq. (15).

2. ½trðX TX ð1�MÞÞ�k ¼ kXk2 � kX :gk2R3

� �k
. We may apply the same reasoning as in the previous line.

Observe that

kXk2
�

� kX :gk2
�

P 0 if kgk ¼ 1:

3.

ðtr½X TXMX TXM �Þk ¼ hX TXM ;MX TX ik ¼ hX TX ðg � gÞ; ðg � gÞX TX ik

¼ hX TðX :g � gÞ; ðg � X :gÞX ik ¼ hðX :g � gÞX T;X ðg � X :gÞik

¼ hðX :g � X :gÞ; ðX :g � X :gÞik ¼ kðX :g � X :gÞk2k ¼ kX :gk4kR3 :

Hence, computing the differentials yields
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DX kX :gk4kR3

� �
:H ¼ 4kkX :gk4k�2

R3 hX :g;H :giR3

D2
X kX :gk4kR3

� �
:ðH ;HÞ ¼ 4kð4k � 2ÞkX :gk4k�4

R3 hX :g;H :gi2R3 þ 4kkX :gk4k�2
R3 hH :g;H :giR3 P 0:

4. trðX TX Þ2 þ trðX TX ÞtrðX TXMÞ ¼ kXk4 þ kXk2kX :gk2R3 . We calculate the second differential, which yields

D2
X kXk4
�

þ kXk2kX :gk2R3

�
:ðH ;HÞ ¼ 8hX ;Hi2 þ 4kXk2kHk2 þ 8hX ;HihX :g;H :giR3

þ 2kX :gk2R3kHk2 þ 2kXk2kH :gk2R3

P 8hX ;Hi2 þ 4kXk2kHk2 � 8ðkXkkH :gkR3ÞðkHkkX :gkR3Þ
þ 2kX :gk2R3kHk2 þ 2kXk2kH :gk2R3

P 8hX ;Hi2 þ 4kXk2kHk2

� 4kXk2kH :gk2R3 � 4kHk2kX :gk2R3 þ 2kX :gk2R3kHk2 þ 2kXk2kH :gk2R3

P 8hX ;Hi2 þ 4kXk2kHk2 � 2kXk2kH :gk2R3 � 2kHk2kX :gk2R3

P 8hX ;Hi2 P 0;

where we have used Young’s inequality.

5. X 7!2½trðX TX Þ�2 þ trðX TX ÞtrðX TX ð1�MÞÞ ¼ 2kXk4 þ kXk2kX ð1�MÞk2. We calculate the second dif-

ferential, which yields

D2
X 2kXk4
�

þ kXk2kX ð1� MÞk2
�
:ðH ;HÞ ¼ 16hX ;Hi2 þ 8kXk2kHk2 þ 8hX ;HihX ð1�MÞ;Hð1�MÞi

þ 2kX ð1�MÞk2kHk2 þ 2kXk2kHð1�MÞk2

P 16hX ;Hi2 þ 8kXk2kHk2 � 8kXkkHkkX ð1�MÞkkHð1�MÞk

þ 2kX ð1�MÞk2kHk2 þ 2kXk2kHð1�MÞk2

P 16hX ;Hi2 þ 8kXk2kHk2 � 4kXk2kHð1�MÞk2

� 4kHk2kX ð1�MÞk2 þ 2kX ð1�MÞk2kHk2

þ 2kXk2kHð1�MÞk2

P 16hX ;Hi2 þ 8kXk2kHk2 � 4kXk2kHk2kð1�MÞk2

� 4kHk2kXk2kð1�MÞk2 þ 2kX ð1�MÞk2kHk2 þ 2kXk2kHð1�Mk2

P 16hX ;Hi2 þ 8kXk2kHk2 � 2kXk2kHk2kð1�MÞk2

� 2kHk2kXk2kð1�MÞk2

P 16hX ;Hi2 þ 8kXk2kHk2 � 8kXk2kHk2 ¼ 16hX ;Hi2 P 0:

6. ð1=2Þ½trðX TX Þ�2 þ trðX TXX TXMÞ ¼ ð1=2ÞkXk4 þ kX TX :gk2R3 . Compute the differentials

DX
1

2
kXk4



þ kX TX :gk2R3

�
:H ¼ 2kXk2kHk2 þ hX TX :g; ðX TH þ HTX Þ:giR3

D2
X

1

2
kXk4



þ kX TX :gk2R3

�
:ðH ;HÞ ¼ 2kXk2kHk2 þ 4hX ;Hi2 þ 2hX TX :g;HTH :giR3

þ kðX TH þ HTX Þ:gk2R3

P 2kXk2kHk2 þ 4hX ;Hi2 � 2kXk2kHk2kgk2R3

þ kðX TH þ HTX Þ:gk2R3

¼ 4hX ;Hi2 þ kðX TH þ HTX Þ:gk2R3 P 0: �
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Lemma C.3 (Generic polyconvex terms). Let F 2 M3	3 and M ¼ g � g. Then the following terms are each

polyconvex for kP 1:

1:
½trðF TF Þ�k

ðdet½F TF �Þ
1
3

; 2:
½trðF TFMÞ�k

ðdet½F TF �Þ
1
3

; 3:
½trðF TF ð1�MÞÞ�k

ðdet½F TF �Þ
1
3

4:
½trðAdjðF TF ÞÞ�k

ðdet½F TF �Þ
1
3

; 5:
½trðAdjðF TF ÞMÞ�k

ðdet½F TF �Þ
1
3

; 6:
½trðAdjðF TF Þð1�MÞÞ�k

ðdet½F TF �Þ
1
3

Proof.

1:
½trðF TF Þ�k

ðdet½F TF �Þ
1
3

¼ kF k2k

ðdet F Þ
2
3

and we may use the same ideas as in the proof to Lemma C.1 to conclude that the term is polyconvex.

2:
½trðF TFMÞ�k

ðdet½F TF �Þ
1
3

¼ hF ; FMik

ðdet F Þ
2
3

¼ hF ; F ðg � gÞik

ðdet F Þ
2
3

¼ kF :gk2k

ðdet F Þ
2
3

:

We have already shown (see Eq. (C.1)) that the function Pðx; yÞ ¼ ð1=xaÞyp is convex provided that a ¼ 2=3
and p ¼ 2kP 2. Now define a new function

bWW ðF ; fÞ :¼ P ðf; kF :gkÞ ¼ kF :gk2k

f
2
3

:

Observe that by the monotonicity of the square for positive arguments we have the inequality

kkF1:g þ ð1� kÞF2:gk2k 6 kkF1:gkð þ ð1� kÞkF2:gkÞ2k: ðC:2Þ
It remains to check the convexity of bWW ðF ; fÞ. To this endbWW ðkF1 þ ð1� kÞF2; kf1 þ ð1� kÞf2Þ ¼ P ðkf1 þ ð1� kÞf2; kkF1:g þ ð1� kÞF2:gkÞ

¼ kkF1:g þ ð1� kÞF2:gk2k

ðkf1 þ ð1� kÞf2Þ
2
3

:

With Eq. (C.2) we have

bWW ðkF1 þ ð1� kÞF2; kf1 þ ð1� kÞf2Þ6
kkF1:gk þ ð1� kÞkF2:gkð Þ2k

ðkf1 þ ð1� kÞf2Þ
2
3

¼ P ðkf1 þ ð1� kÞf2; kkF1:gk þ ð1� kÞkF2:gkÞ:

The convexity of P yieldsbWW ðkF1 þ ð1� kÞF2; kf1 þ ð1� kÞf2Þ6 kP ðf; kF1:gkÞ þ ð1� kÞP ðf2; kF2:gkÞ

¼ k bWW ðF1; f1Þ þ ð1� kÞ bWW ðF2; f2Þ:

The proof is finished bearing the correct extension (3.29) in mind.

3:
½trðF TF ð1�MÞÞ�k

ðdet½F TF �Þ
1
3

¼ kF ð1�MÞk2k

ðdet F Þ
2
3

and we proceed as in the second case:
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4:
½trðAdjðF TF ÞÞ�k

ðdet½F TF �Þ
1
3

¼ kAdjF k2k

ðdet F Þ
2
3

and we proceed as in the first case:

5:
½trðAdjðF TF ÞMÞ�k

ðdet½F TF �Þ
1
3

¼ kAdjF T:gk2k

ðdet F Þ
2
3

and we proceed as in the second case:

6:
½trðAdjðF TF Þð1�MÞÞ�k

ðdet½F TF �Þ
1
3

¼ kAdjF Tð1�MÞk2k

ðdet F Þ
2
3

and we proceed as in the second case: �

Corollary C.4 (Generic exponential polyconvex terms). Let F 2 M3	3 and M ¼ g � g. Then the following

terms are each polyconvex for kP 1:

1: exp
½trðF TF Þ�k

ðdet½F TF �Þ
1
3

" #
; 2: exp

½trðF TFMÞ�k

ðdet½F TF �Þ
1
3

" #
;

3: exp
½trðF TF ð1�MÞÞ�k

ðdet½F TF �Þ
1
3

" #
; 4: exp

½trðAdjðF TF ÞÞ�k

ðdet½F TF �Þ
1
3

" #
;

5: exp
½trðAdjðF TF ÞMÞ�k

ðdet½F TF �Þ
1
3

" #
; 6: exp

½trðAdjðF TF Þð1�MÞÞ�k

ðdet½F TF �Þ
1
3

" #
;

7: exp W ðF Þ½ � if W ðF Þ is polyconvex:

Proof. By the foregoing lemma each argument of the exponential is polyconvex. Since exp is convex and

monotone increasing it preserves the underlying convexity. Hence the composition is polyconvex. Observe,

however, that these functions alone are not stress-free in the reference configuration. �

Lemma C.5 (Special polyconvex terms). Let F 2 M3	3. Then the following terms are each polyconvex as

functions F 7!Rþ:

1: F 7! kF k2

ðdet F Þ
2
3

 
� 3

!i

; iP 1:

2: F 7! kAdjF k3

ðdet F Þ2

 
� 3

ffiffiffi
3

p
!j

¼ kAdjF Tk3

ðdet F Þ2

 
� 3

ffiffiffi
3

p
!j

; jP 1:

Proof.

1. We have already checked in Lemma C.1 that the expression ðkF k2=ðdet F Þ
2
3Þ is polyconvex, hence there

exists a convex function P ðF ; det F Þ ¼ ðkF k2=ðdet F Þ
2
3Þ. Observe that by the estimates for the invariants

Lemma A.11 we know that P ðF ; det F Þ � 3P 0. We define the function ½a�þ ¼ maxfa; 0g. Observe that

x 7! maxff ðxÞ; 0g is convex if f is convex. Then

kF k2

ðdet F Þ
2
3

 
� 3

!i

¼ ½P ðF ; det F Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
X2R10

�3�iþ:
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P is convex in X and x 7!xi, iP 1 is monotone increasing for positive values and convex, hence

½P ðX Þ � 3�iþ
is altogether convex in X , which is however the polyconvexity of

F 7! ½PðF ; det F Þ � 3�iþ:

Since this last expression coincides with

kF k2

ðdet F Þ
2
3

 
� 3

!i

the polyconvexity is proved. �

2. We know already that ðkAdjF k3=ðdet F Þ2Þ � 3
ffiffiffi
3

p
is polyconvex since the exponents verify the decisive

inequality ða þ 1Þ=aP p=ðp � 1Þ. Moreover, kAdjF k3=ðdet F Þ2Þ � 3
ffiffiffi
3

p
P 0 with Lemma A.11. Now ex-

actly the same reasoning as before applies.

Corollary C.6. Let F 2 M3	3. Then the following more general terms are each polyconvex:

1: F 7! kF k2k

ðdet F Þ
2k
3

 
� 3k

!i

; iP 1; kP 1:

2: F 7! kAdjF k3k

ðdet F Þ2k

 
� ð3

ffiffiffi
3

p
Þk
!j

; jP 1; kP 1:

3: F 7! exp
kF k2k

ðdet F Þ
2k
3

 "
� 3k

!i#
� 1; iP 1; kP 1:

4: F 7! exp
kAdjF k3k

ðdet F Þ2k

 "
� ð3

ffiffiffi
3

p
Þk
!j#

� 1; jP 1; kP 1:

Proof. Apply the same ideas as above and observe that exp is a convex monotone increasing function, so
that we may apply Lemma B.9. �

One might be tempted to use some other ansatz terms in order to construct polyconvex strain energies.

However, we have e.g.

Lemma C.7 (Non-elliptic terms I). Let F 2 M3	3 and M ¼ a� a. Then the following terms are each non-

elliptic, hence non-quasiconvex:

1: F 7! trðF TFMÞtrðF TF Þ ¼ trðCMÞtrðCÞ:

2: F 7! trðF TFF TFMÞ ¼ trðC2MÞ:

3: F 7! kAdjF k2

ðdet F Þ
4
3

 
� 3

!i

¼ tr Adj
C

ðdetCÞ
1
3

 ! ! 
� 3

!i

¼ tr Adj
C

ðdetCÞ
1
3

 !  
� 1

!!i

iP 1:
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Proof.

1. See Proof (3).

2. See Proof (5).

3. Even though kAdjF k2=ðdet F Þ
4
3 � 3P 0 in light of Lemma A.11, the term kAdjF k2=ðdet F Þ

4
3 alone does

not have the right exponents to be polyconvex. Moreover it can be shown that the term is non-elliptic

(Dacorogna, 1989). �

Lemma C.8 (Non-elliptic terms II). Let F 2 M3	3 and M ¼ a� a with kak ¼ 1. Then the following terms are

each non-elliptic, hence non-quasiconvex:

1: F 7! exp
C

ðdetCÞ
1
3

; a

* 
� a

+
� 1

!
� C

ðdetCÞ
1
3

; a

*
� a

+
:

2: F 7! C

ðdetCÞ
1
3

; a

* 
� a

+
� 1

!q

; qP 2:

Observe that both terms have stress-free reference configuration.

Proof. We show the non-ellipticity of the first expression. The non-ellipticity of the second one follows
along the same lines. We calculate

C

ðdetCÞ
1
3

; a

*
� a

+
¼ F TF

ðdet F Þ
2
3

; a

*
� a

+
¼ 1

ðdet F Þ
2
3

kF :ak2:

Set F ¼ F0 þ tn � g. This yields

1

ðdet F Þ
2
3

kF :ak2 ¼ kF0 þ tn � gk2

ðdet½F0 þ tn � g�Þ
2
3

¼ kF0:aþ tnhg; aik2

ðdet F0 þ hAdjF T
0 ; tn � gi þ 0þ 0Þ

2
3

¼ kF0:ak2 þ 2thF0:a; nihg; ai þ t2hn; nihg; ai
ðdet F0 þ th1;AdjF0:n � giÞ

2
3

¼ kF0:ak2 þ 2thF0:a; nihg; ai þ t2hn; nihg; ai
ðdet F0 þ thAdjF0:n; giÞ

2
3

:

Now we choose

a ¼ 1ffiffiffi
2

p
1

1

0

0@ 1A; n ¼
0

1

0

0@ 1A; g ¼
1

0

0

0@ 1A; F �1
0 ¼

1ffiffi
2

p 1ffiffi
2

p 0

1ffiffi
2

p 3
ffiffi
2

p

2
0

0 0 d

0@ 1A:

This yields

kak ¼ knk ¼ kgk ¼ 1;

ha; gi ¼ ha; ni ¼ 1ffiffiffi
2

p ;

hg; ni ¼ 0;

F �1
0 :g ¼ a; det F0 ¼

1

d
; F0:a ¼ g

det F0a ¼ det F0F �1
0 :g ¼ AdjF0:g:
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As a consequence, we get

kF0:ak2 þ 2thF0:a; nihg; ai þ t2hn; nihg; ai
ðdet F0 þ thAdjF0:n; giÞ

2
3

¼ kgk2 þ thg; nihg; ai þ t2hn; nihg; ai
1
d þ thn;AdjF T

0 :gi
	 
2

3

¼
1þ 0þ t2 1ffiffi

2
p

1
d þ thn;AdjF0:gi
	 
2

3

¼
1þ t2 1ffiffi

2
p

1
d þ t det F0hn; ai
	 
2

3

¼
1þ t2 1ffiffi

2
p

1

d
2
3

1þ t 1ffiffi
2

p
� �2

3

:

Thus

hðtÞ ¼ W ðF0 þ tn � gÞ ¼ exp
1þ t2 1ffiffi

2
p

1

d
2
3

1þ t 1ffiffi
2

p
� �2

3

0BB@ � 1

1CCA�
1þ t2 1ffiffi

2
p

1

d
2
3

1þ t 1ffiffi
2

p
� �2

3

:

If we choose 1=d
2
3 ¼ 3 it turns out that h is not convex in t, hence (Theorem 3.5) W is not elliptic. We remark

that the non-ellipticity is mainly due to the fact that

C

ðdetCÞ
1
3

; a

*
� a

+
P 1

is in general not true (consider Fn ¼ diagðn; 1; 1nÞ), whereas

C

ðdetCÞ
1
3

; 1

* +
P 3

holds by virtue of Lemma A.11. �

Lemma C.9 (Non-elliptic terms III). Let F 2 M3	3 andM ¼ a� a with kak ¼ 1. Then the following terms are

non-elliptic, hence non-quasiconvex:

1. F 7!W ðF Þ ¼ c1trðCMÞ � c2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCMÞ

p
.

2. F 7!W ðF Þ ¼ c1trðAdjCMÞ � c2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAdjCMÞ

p
.

with c1, c2 > 0. Observe that these terms have a physically desired singularity in fiber direction, i.e.

WSðF Þ ! 1 as F :a ! 0

WSðF Þ ! 1 as AdjF :a ! 0:

Proof. We show that the ellipticity condition is in general violated for the first term. We calculate

WSðF Þ ¼ c1trðCMÞ � c2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCMÞ

p
¼ c1kF :ak2 � c2 ln kF :ak ¼ c1kF :ak2 �

c2
2
ln kF :ak2:

Then calculating the first and second differential yields

DWSðF Þ:H ¼ 2c1hF :a;H :ai � c2
kF :ak2

hF :a;H :ai

D2WSðF Þ:ðH ;HÞ ¼ 2c1kH :ak2 � c2
1

kF :ak2
kH :ak2

 
� 2

hF :a;H :ai2

kF :ak4

!
:
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Take H ¼ n � g with knk ¼ kgk ¼ 1. This gives

D2WSðF Þ:ðn � g; n � gÞ ¼ 2c1knhg; aik2 � c2
1

kF :ak2
knhg; aik2

 
� 2

hF :a; nhg; ai2i
kF :ak4

!

¼ 2c1hg; ai2 � c2
hg; ai2

kF :ak2

 
� 2

hF :a; nihg; ai2

kF :ak4

!
:

Without loss of generality assume that n is chosen such that hF :a; ni ¼ 0. It follows that

D2WSðF Þ:ðn � g; n � gÞ ¼ hg; ai2 2c1

 
� c2
kF :ak2

!
:

If the deformation F in fiber direction a is such that kF :ak2 < ðc2=2c1Þ then

D2WSðF Þ:ðn � g; n � gÞ ¼ hg; ai2 2c1

 
� c2
kF :ak2

!
< 0:

Observe that the more severe the deformation in fiber direction is, the more the ellipticity condition is

violated. It is thus just the physically interesting region kF :ak small which fails to be elliptic. Now we

consider the second term. We calculate

WSðF Þ ¼ c1trðAdjCMÞ � c2 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðAdjCMÞ

p
¼ c1kAdjF T:ak2 � c2

2
ln kAdjF T:ak2

DWSðF Þ:H ¼ 2c1hAdjF T:a;DAdjF T:HT:ai � c2
kAdjF T:ak2

hAdjF T:a;DAdjF T:HT:ai

D2WSðF Þ:ðH ;HÞ ¼ 2c1½hDAdjF T:HT:a;DAdjF T:HT:ai þ hAdjF T:a;D2AdjF T:ðHT;HTÞ:ai�

� c2
kAdjF T:ak2

½hDAdjF T:HT:a;DAdjF T:HT:ai

þ hAdjF T:a;D2AdjF T:ðHT;HTÞ:ai�

þ 2c2
kAdjF T:ak4

hAdjF T:a;DAdjF T:HT:ai2:

Since D2AdjF :ðH ;HÞ ¼ 2AdjH and for H ¼ n � g we have Adjn � g ¼ 0, it follows that

D2WSðF Þ:ðn � g; n � gÞ ¼ 2c1kDAdjF T:HT:ak2 � c2
kAdjF T:ak2

kDAdjF T:HT:ak2

þ 2c2
kAdjF T:ak4

hAdjF T:a;DAdjF T:HT:ai2

¼ kDAdjF T:HT:ak2 2c1

"
� c2
kAdjF T:ak2

#

þ 2c2
kAdjF T:ak4

hAdjF T:a;DAdjF T:HT:ai2:
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Consider hAdjF T:a;DAdjF T:HT:ai. If we choose F �T :a ¼ sn with s 2 Rþ, then

hAdjF T:a;DAdjF T:HT:ai ¼ hdet FF �T :a;AdjF T½hF �1;HTi1� HTF �T �:ai
¼ det F 2hF �T :a; F �T ½hF �1; g � ni1� ðg � nÞF �T �:ai
¼ det F 2hF �T :a; hF �T :g; niF �T :a� F �T :ðg � nÞF �T :ai

¼ det F 2 kF �T :ak2hF �T :g; ni
h

� hF �T :a; F �T :ðg � nÞF �T :ai
i

¼ det F 2s2 knk2hF �T :g; ni
h

� hn; ðF �T :g � nÞ:ni
i

¼ det F 2s2 1hF �1:n; gi
5

� hg; F �1:n1i
6
¼ 0:

With this choice we get

D2WSðF Þ:ðn � g; n � gÞ ¼ kDAdjF T:HT:ak2 2c1

"
� c2
kAdjF T:ak2

#

¼ kDAdjF T:HT:ak2 2c1

"
� c2
det F 2kF �T :ak2

#
¼ kDAdjF T:HT:ak2 2c1

h
� c2
det F 2s2

i
:

Since F can still be chosen with det F ¼ 1 taking s > 0 sufficiently small finishes the argument. �
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