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Abstract

In this paper we propose a formulation of polyconvex anisotropic hyperelasticity at finite strains. The main goal is
the representation of the governing constitutive equations within the framework of the invariant theory which auto-
matically fulfill the polyconvexity condition in the sense of Ball in order to guarantee the existence of minimizers. Based
on the introduction of additional argument tensors, the so-called structural tensors, the free energies and the anisotropic
stress response functions are represented by scalar-valued and tensor-valued isotropic tensor functions, respectively. In
order to obtain various free energies to model specific problems which permit the matching of data stemming from
experiments, we assume an additive structure. A variety of isotropic and anisotropic functions for transversely isotropic
material behaviour are derived, where each individual term fulfills a priori the polyconvexity condition. The tensor
generators for the stresses and moduli are evaluated in detail and some representative numerical examples are pre-
sented. Furthermore, we propose an extension to orthotropic symmetry.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Anisotropic materials have a wide range of applications, e.g. in composite materials, in crystals as well as
in biological-mechanical systems. The study of these different materials involves many topics, including
manufacturing processes, anisotropic elasticity and anisotropic inelasticity, and micro-mechanics see e.g.
Jones (1975). In this paper we will focus on a phenomenological description of anisotropic elasticity at large
strains, for small strain formulations see e.g. Ting (1996). The main goal of this work is the construction
of polyconvex anisotropic free energy functions, particularly for transverse isotropic materials. Pro-
posed transversely isotropic free energy functions in the literature are often based on a direct extension of
the small strain theory to the case of finite deformations by replacing the linear strain tensor with the
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Green—Lagrange strain tensor see e.g. Spencer (1987b). Weiss et al. (1996) presented a model for appli-
cations to biological soft tissues for fully incompressible material behaviour. They introduced an expo-
nential function in terms of the so-called mixed invariants. In the recent work of Holzapfel et al. (2000) a
new constitutive orthotropic model for the simulation of arterial walls has been proposed, where each layer
of the artery is modeled as a fiber-reinforced material. In the proposed model the terms in the mixed in-
variants, with respect to several preferred directions, are additively decoupled. That means the model can be
considered as the superposition of different transverse isotropic models. For an overview and a comparative
study of several mechanical models in biomechanical systems see also Holzapfel et al. (2000). A model for
nearly incompressible, transversely isotropic materials for the description of reinforced rubber-like mate-
rials is given in Riiter and Stein (2000); they also developed an error estimator for the measurement of the
discretization error within the finite element concept. Anisotropic models for the simulation of anisotropic
shells have been proposed by Liirding (2001) and Itskov (2001). A general framework for representation of
anisotropic elastic materials by symmetric irreducible tensors based on series expansions of elastic free
energy functions in terms of harmonic polynomials was proposed by Hackl (1999). The advantage of this
approach is its ability to derive effective schemes of parameter identifications. A set of physically motivated
deformation invariants for materials exhibiting transverse isotropic behaviour was developed by Criscione
et al. (2001). The authors suggest that this approach is potentially useful for solving inverse problems due to
several orthogonality conditions.

In contrast to this, no analysis of general convexity conditions for anisotropic materials, such as
polyconvexity, has been proposed in the literature to the knowledge of the authors. We will focus on the
case of transverse isotropy at finite strains which automatically satisfy the so-called polyconvexity condition
within the framework of the invariant theory. The complex mechanical behaviour of elastic materials at
large strains with an oriented internal structure can be described with tensor-valued functions in terms of
several tensor variables, the deformation gradient and additional structural tensors. General invariant
forms of the constitutive equations lead to rational strategies for the modelling of the complex anisotropic
response functions. Based on representation theorems for tensor functions the general forms can be derived
and the type and minimal number of the scalar variables entering the constitutive equations can be given.
For an introduction to the invariant formulation of anisotropic constitutive equations based on the concept
of structural tensors, also denoted as the concept of integrity bases, and their representations as isotropic
tensor functions see Spencer (1971), Boehler (1979, 1987), Betten (1987) and Schroder (1996). In this
context see also Smith and Rivlin (1957, 1958). N

The main goal of this paper is the establishment of invariant forms of the stress response function S (e)
which are derived from a scalar-valued free energy function y(e). These invariant forms automatically
satisfy the symmetry relations of the considered body. Furthermore, they are automatically invariant under
coordinate transformations of elements of the material symmetry group. Thus the values of the free energy
function and the values of the stresses can be considered as invariants under all transformations of the
elements of the material symmetry group. For the representation of the scalar-valued and tensor-valued
functions the set of scalar invariants, the integrity bases and the generating set of tensors are required. For
detailed representations of scalar- and tensor-valued functions we refer to Wang (1969a,b, 1970, 1971),
Smith et al. (1963), Smith (1965, 1970, 1971), and Zheng and Spencer (1993a,b). The integrity bases for
polynomial isotropic scalar-valued functions are given by Smith (1965) and the generating sets for the
tensor functions are derived by Spencer (1971). For the classification of material and physical symmetries
see Zheng and Boehler (1994).

The mathematical treatment of boundary value problems is mainly based on the direct methods of
variations, i.e. finding a minimizing deformation of the elastic free energy subject to the specific boundary
conditions. Existence of minimizers of some variational principles in finite elasticity is based on the concept
of quasiconvexity, introduced by Morrey (1952), which ensures that the functional to be minimized is
weakly lower semi-continuous. This inequality condition is rather complicated to handle since it is an in-



J. Schroder, P. Neff | International Journal of Solids and Structures 40 (2003) 401-445 403

tegral inequality. Thus, a more important concept for practical use is the notion of polyconvexity in the
sense of Ball (1977a,b) (in this context see also Marsden and Hughes, 1983 and Ciarlet, 1988). For isotropic
material response functions there exist some models, e.g. the Ogden-, Mooney-Rivlin- and Neo-Hooke-type
models, which satisfy this concept. Furthermore, for isochoric—volumetric decouplings some forms of
polyconvex energies have been proposed by Dacorogna (1989). Some simple stored energy functions, e.g. of
St. Venant—Kirchhoff-type or formulations based on the so-called Hencky tensor, are however not poly-
convex (see Ciarlet, 1988, Raoult, 1986 and Neff, 2000). It can be shown that polyconvexity of the stored
energy implies that the corresponding acoustic tensor is elliptic for all deformations. The precise difference
between the local property of ellipticity and the non-local condition of quasiconvexity is still an active field
of research. Polyconvexity does not conflict with the possible non-uniqueness of equilibrium solutions,
since it guarantees only the existence of at least one minimizing deformation. It is possible that several
metastable states and several absolute minimizers exist, though even so one might conjecture that apart
from trivial symmetries the absolute minimizer is unique, at least for the pure Dirichlet boundary value
problem. We remark, following Ball (1977a,b), that polyconvexity implies unqualified existence for all
boundary conditions and body forces, which might be somewhat unrealistic. The proof that some energy is
elliptic for some reasonable range of deformation gradients is in general not enough to establish an exis-
tence theorem.

This paper is organized as follows. In Section 2 we present the fundamental kinematic relations at finite
strains and the reduced forms which automatically fulfill the objectivity condition. After that we focus on
the continuum mechanical modelling of anisotropic elasticity based on the concept of structural tensors.
Section 3 is concerned with the construction of transversely isotropic material response. The integrity basis
is given and special model problems are discussed. One part of this section deals with isotropic free energy
terms, where some well-known, as well as some new functions are discussed in detail. The main part of this
section is concerned with polyconvex transversely isotropic functions. For all proposed ansatz functions
the polyconvexity condition is proved. Furthermore, we give geometrical interpretations of some of the
polyconvex polynomial invariants. The representation for the stresses and moduli is given in detail for the
Lagrangian description as well as the expression for the Kirchhoff stresses. The problem of the stress-free
reference configuration and the linearized behaviour near the natural state is discussed in Section 4. Here
we identify the expressions of the material parameters involved in the invariant formulation with the
parameters of the classical formulation for the linearized quantities. An extension to orthotropic material
response is proposed in Section 5 and a short summary of the variational and finite element formulation
and the consistent linearization is given in Section 6. The following section presents two numerical ex-
amples: the three dimensional analysis of a tapered cantilever and the two dimensional simulation of the
elongation of a perforated plate. In the extensive appendix we have summarized the lengthy proofs of the
polyconvexity of the individual terms.

2. Continuum mechanics: foundations

In the following we consider hyperelastic materials which postulate the existence of a so-called Helm-
holtz free—energy function . The constitutive equations have to fulfill several requirements: the concept of
material symmetry and the principle of material frame indifference, also denoted as principle of material
objectivity. Thus, the constitutive functions for anisotropic solids must satisfy the combined material frame
indifference and the material symmetry condition, which requires them to be an isotropic tensor function.
After giving some fundamental kinematic relations and presenting the well-known reduced forms for the
constitutive equations which automatically fulfill the objectivity condition we focus on the continuum
mechanical modelling of anisotropic elasticity within the framework of isotropic tensor functions based on
the concept of structural tensors.
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2.1. Notation

For a,b € R® we let (a, b)y: denote the scalar product on R? with norm ||a||: = (a, a) [lR/f. We denote with
M** the set of real 3 x 3 matrices and by skew (M**?) the skew-symmetric real 3 x 3 matrices. The
standard Euclidean scalar product on M* is given by (H, B),;:« = trf[HB"] and subsequently we have
|H|[3 s = (H, H), . PSym characterizes the set of positive definite symmetric M*** matrices. With
AdjH we denote the adjugate matrix of transposed cofactors Cof(H) such that AdjH = det[H]H*1 =
Cof (H)" if H € GL(3,R), where GL(3, R) characterizes the set of all invertible 3 x 3-tensors. The identity
matrix on M**? will be denoted by 1 or 1, so that tr[H] = (H,1) = H : 1. The index notation of 4 : H is e.g.
A,sH"® and that of Ha = H - ais e.g. H,a®. In the following we skip the index R*, M**® where there is no
danger of confusion. Furthermore, 8z W (F), 0cW(C), DcW and 0y W (F).H, 02 W (F).(H, H) denote Frechet
derivatives (in this context see Appendix A, Lemma A.13).

2.2. Geometry and kinematics

The body of interest in the reference configuration is denoted with # C R*, parametrized in X and the
current configuration with % C R?, parametrized in x. The non-linear deformation map ¢, : # — & at
time ¢ € R, maps points X € # onto points x € .. The deformation gradient F is defined by

F(X) = Vg,(X) 2.1)

with the Jacobian J(X) := det F(X) > 0. The index notation of F is F¢ := 0x*/0X“. An important strain
measure, the right Cauchy—Green tensor, is defined by

C:=F'F with Ciy = FIF)gu, (2.2)

where g denotes the covariant metric tensor in the current configuration. The standard covariant metric
tensors G and g within the Lagrange and Eulerian settings appear in the index representation G5 and g,
respectively. Thus the contravariant metric tensors G~ and g~' have the index representation G*# and g,
respectively. For the representations in Cartesian coordinates we arrive at the simple expressions
Gus = G'® = §,5 for Lagrangian metric tensors and g, = g*° = &, for the Eulerian metric tensors. For the
geometrical interpretations of the polynomial invariants in the following sections we often use expressions
based on the mappings of the area and volume elements. Let Nd4 and nda denote the infinitesimal area
vectors and dV and dv denote the infinitesimal volume elements defined in the reference and the current
configuration, respectively, then

nda = Cof[FINdA and dv = det[F]dV (2.3)

holds. The first part of Eq. (2.3) is the well-known Nanson’s formula. It should be mentioned that the
argument (F,AdjF,det F), with AdjF = (CofF)", plays an important role in the definition of polycon-
vexity; this will be discussed in detail in Section 3.

2.3. Hyperelasticity and invariance conditions

We consider hyperelastic materials which postulate the existence of a so-called Helmholtz free-energy
function v, assumed to be defined per unit reference volume. Here we focus on the dependence of i solely
in the deformation gradient, i.e. = /(F,e). The argument (e) in the free energy function denotes addi-
tional tensor arguments, which characterize the anisotropy of the material; they will be discussed in the
following sections. We consider perfect elastic materials, which means that the internal dissipation %y, is
zero for every admissible process. The constitutive equations for the stresses are obtained by evaluation of
the Clausius—Planck inequality, neglecting thermal effects, in the form
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Dy =P:F—yy=(P—0p)) : F>0— P=0p. (2.4)

P characterizes the first Piola—Kirchhoff stress tensor and F denotes the material time derivative of the
deformation gradient, which is identical to the material velocity gradient. Furthermore, Or(e) is the ab-
breviation for d(e)/OF.

The principle of material frame indifference requires the invariance of the constitutive equation under
superimposed rigid body motions onto the current configuration, i.e. under the mapping x — Qx the
condition (F) = y(QF) holds VQ € SO(3). For the stress response this principle leads with (2.4 second
part) to the invariance relations

S(F)=S(QF), QP(F)=P(QF), Qa(F)Q'=6(QF) V¥Q¢€S0(3). (2.5)
Reduced constitutive equations which fulfill a priori the principle of material objectivity (2.5) yield e.g. the
functional dependence = Y/(C) = y(C(F,g)) (see e.g. Truesdell and Noll, 1965). If we assume the free
energy function to be a function of the right Cauchy—Green tensor y(C) or of the spatial metric g we obtain
with the chain rule the expressions

S =20c)(C) and t=Jo=20,4(C(F,g)) (2.6)

(see e.g. Marsden and Hughes, 1983). The Eq. (2.6), is the so-called Doyle-Ericksen formula. S, t and ¢

denote the Second Piola—Kirchhoff stresses, the Kirchhoff stresses and the Cauchy stresses, respectively.
In the case of anisotropy we introduce a material symmetry group %; with respect to a local reference

configuration, which characterizes the anisotropy class of the material. The elements of %, are denoted by

the unimodular tensors 'Q|i = 1,...,n. The concept of material symmetry requires that the response be
invariant under transformations with elements of the symmetry group, i.c.
V(FQ) = y(F) VQ€e%,F. (27

Thus superimposed rotations and reflections on the reference configuration with elements of the material
symmetry group do not influence the behaviour of the anisotropic material. Equivalently, we can write
condition (2.7) in terms of the stress response function

P(FQ) = P(F)Q VYQ & %,,F. (2.8)

We say that the function y in (2.7) or P in the latter equation are %-invariant functions. Without any
restrictions we set %; C SO(3), where SO(3) characterizes the special orthogonal group. Based on the
mapping X — Q"X for arbitrary rotation tensors Q € SO(3) we get from the requirement of an isotropic
tensor function 6(F) = 6(FQ) YO € SO(3) the relations

Q'S(F)Q = S(FQ), P(F)Q=P(FQ) VQe&SO(3). (2.9)

Thus it is clear that material symmetries impose several restrictions on the form of the constitutive
functions of the anisotropic material. In order to work out the explicit restrictions for the individual
symmetry groups, or more reasonably to point out general forms of the functions which fulfill these re-
strictions, it is necessary to use representation theorems for anisotropic tensor functions. To sum up, the
constitutive expressions must satisfy the combined material frame indifference and the material symmetry
condition, which requires them to be isotropic tensor functions with respect to an extended tensorial ar-
gument list. This topic is discussed in the following section.

2.4. Isotropic tensor functions for anisotropic material response

In this section we point out the main ingredients for deriving isotropic tensor functions for anisotropic
solids. The main idea is the extension of %,-invariant functions into functions which are invariant under a
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Fig. 1. Preferred directions ‘a and ‘@ in the neighborhoods 2, C % and 24 C % of the points X € 4 and x € %, respectively.

larger group, here the special orthogonal group. This implies that it is in principle possible to transform an
anisotropic constitutive function into an isotropic function through some tensors, the so-called structural
tensors, which reflect the symmetry group of the considered material. The concept of structural tensors was
first introduced in an attractive way with important applications by Boehler in 1978/1979, although some
similar ideas might have been touched on earlier. For a brief overview of representation of tensor functions
see Rychlewski and Zhang (1991). The symmetry group of a material is defined by (2.7) and (2.8). Here we
only consider anisotropic materials which can be characterized by certain directions, lines or planes. That
means that the anisotropy can be described by some unit vectors ‘a and some second order tensors ‘M
defined in the reference configuration, in this context we refer to Zheng and Boehler (1994). Fig. 1 illustrates
the preferred directions ‘a and ‘a := F'a with respect to the reference and current configuration, respec-
tively. In the following, we restrict ourselves to the cases of transverse isotropy and orthotropy, where the
material symmetry can be characterized by a set of structural tensors of second order. Let ¥, be the in-
variance group of the structural tensors, i.e.

Gy :={0€S0(3),0«&=¢E}, (2.10)
with &:={'M} and i=1 for transversely isotropic, and i =1,2(,3) for orthotropic, materials. The
transformations ‘Q|i = 1,...,n represent rotations and reflections with respect to preferred directions and

planes. In the following, we skip the index ‘(o) if there is no danger of confusion. The last term in (2.10)
characterizes the mapping & — Q x & := {Q"MQ}. If 4,, = %, where Yy is defined by (2.7) and (2.8), then
the invariance group preserves the characteristics of the anisotropic solid.

Let us assume the existence of a set of ¥;-invariant structural tensors &. Then we can transform (2.7) into
a function which is invariant under the special orthogonal group. This leads to a scalar-valued isotropic
tensor function in an extended argument list. That means that rotations superimposed onto the reference
configuration with the mappings X — 0'X and & — 0« ¢ lead to the condition W = V(F,¢) =
W(FQ, Q&) VO € SO(3). Due to the concept of material frame indifference we arrive at a further re-
duction of the constitutive equation of the form

Y =y(C,8) =¥(Q"CQ,0+¢&) VO eSO(3), (2.11)

which is the definition of an isotropic scalar-valued tensor function in the arguments (C, &). For the stresses
we obtain the isotropic tensor-valued tensor function

Q'S(C.§)0=S(Q"CQ.Q+¢) VQeSO(3). (2.12)

It should be noted that the function is anisotropic with respect to C. Furthermore, the relation
0'S(C,&)Q = S(Q"CQ, &) holds for transformations Q € %, and only for these transformations, thus the
set of structural tensors M characterizes the material symmetry as pointed out above. It should be noted
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that if 4, = SO(3) the material is isotropic. There are further material symmetries which are finite sub-
groups of SO(3), for the different crystal classes (see e.g. Smith et al., 1963, Spencer, 1971 and the references
therein).

3. Free energy function for transverse isotropic materials

For the explicit formulation of invariant constitutive equations the representation theorems of tensor
functions are used. As discussed in the previous section the governing constitutive equations have to
represent the material symmetries of the body of interest a priori. Furthermore, the minimal number of
independent scalar variables (the set of independent anisotropic mechanical variables) which have to enter
the constitutive expression is required. For a detailed discussion of this topic we refer to Boehler (1987).

3.1. Polynomial basis

For the construction of specific constitutive equations we need the invariants of the deformation tensor
and the additional structural tensor. An irreducible polynomial basis consists of a collection of members,
where none of them can be expressed as a polynomial function of the others. Based on the Hilbert-theorem
there exists for a finite basis of tensors a finite integrity basis (see Weyl, 1946). Transverse isotropy is
characterized by one preferred unit direction @ and the material symmetry group is defined by

Gy :=A{I;0(0,a)|0 < o < 27}, (3.13)
where Q(o, a) are all rotations about the a-axis. The structural tensor M whose invariance group preserves
the material symmetry group % is given by

M:=a®a. (3.14)
The mathematical properties of the structural tensor M are given in Appendix A, Lemma A.12. The in-
tegrity bases consist of the traces of products of powers of the argument tensors, the so-called principal

invariants and the mixed invariants. The principal invariants [, = fk(C ),k =1,2,3 of a second order tensor
C are defined as the coefficients of the characteristic polynomial

3

f(A) =det[il - C] = > (1)1, (3.15)

k=0

with I, = 1 (see also Appendix A, Theorem A.8 and Lemmas A.9 and A.10). The principal invariants of the
considered second order tensor have the explicit expressions

I :=trC, L :=tr[CofC], I :=detC. (3.16)

These invariants can also be expressed in terms of the so-called basic invariants J;, i = 1, 2, 3. They are
defined by the traces of powers of C, i.e.

Jy=trC, Jy:=1tr[CY, J5:=tr[CY. (3.17)
These quantities are related to the principal invariants by the simple algebraic expressions
L=1, L= 2L, Jy=I —3LL+3L. (3.18)

The additional invariants, the so-called mixed invariants, to the invariants of a single tensor for two
symmetric second order tensors C and M are

Jy = tr[CM], Js :=tr[C*M], Js:=tr[CM?], J,:=tr|C°M?], (3.19)
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(see e.g. Spencer, 1971, 1987). Let M be of rank one and let us assume the normalization condition
[|M]| = 1, then we obtain the identities Js = J; and J; = Js and we can rule out the terms Js and J;7 from our
considerations. The only remaining basic invariant of the single tensor M under the latter condition is

TM = trM, (320)

which is a constant. Note that the higher principal invariants of M, i.e. tr[CofM] and det M, are equal to
zero. Basic properties of the scalar product and tensor product are given in Appendix A, Corollary A.2 and
Lemma A.4, respectively. For the construction of constitutive equations it is necessary to determine the
minimal set of invariants from which all other invariants can be generated. Here we focus on polynomial
invariants. The integrity basis is defined by the set of polynomial invariants which allows the construction
of any polynomial invariant as a polynomial in members of the given set (see e.g. Spencer, 1971). The
polynomial basis for the construction of a specific free energy function y is given by

91 = {11,[2713,J4,J5;7M} or yz = {Jl,...,J5;jM}. (321)

The bases (3.21) are invariant under all transformations with elements of ;. As a result the polynomial
functions in elements of the polynomial basis are also invariant under these transformations. For the free
energy function we assume the general form

Y =V(LI|L € ?)+c¢ forj=1orj=2. (3.22)

In order to fulfill the non-essential normalization condition (1) = 0 we introduce the constant ¢ € R.

3.2. Representation of polyconvex free energy functions

In this section we discuss specific forms of the free energy function y for transverse isotropy in order to
guarantee the existence of minimizers of some variational principles for finite strains. The existence of
minimizers of some variational principles in finite elasticity is based on the concept of quasiconvexity,
introduced by Morrey (1952), which ensures that the functional to be minimized is weakly lower semi-
continuous. This inequality condition is rather complicated to handle since it is an integral inequality. Thus
a more important concept for practical use is the notion of polyconvexity in the sense of Ball (1977a,b) in
this context see also Marsden and Hughes (1983) and Ciarlet (1988). For isotropic material response
functions there exist some models, e.g. the Ogden-, Mooney-Rivlin- and Neo-Hooke-type models, which
satisfy this concept. Furthermore, it can be shown that polyconvexity of the stored energy implies that the
corresponding acoustic tensor is elliptic for all deformations. For finite-valued, continuous functions we
can recapitulate the important implications:

convexity = polyconvexity = quasiconvexity = rank one convexity.

The converse implications are not true. Furthermore, the quasiconvexity of a function ensures that the
associated functional to be minimized is weakly lower semi-continuous and the rank one convexity of a
function ensures that the Euler equations of the associated functional are elliptic (in this context see e.g.
Dacorogna, 1989 and Silhavy, 1977).

Now we introduce W € C2(M***,R), a given scalar valued energy density. We say that

Definition 3.1 (Polyconvexity). F— W(F) is polyconvex if and only if there exists a function
P: M*3 x M*¥? x R— R (in general non-unique) such that

W(F) = P(F,Adj F, det F)
and the function R”— R, (X,Y,Z)—P(X,Y,Z) is convex for all points X € R>,
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In the above definition and in the following we drop the X-dependence of the individual functions if
there is no danger of confusion, i.e. we write W € C2(M*>* R) instead of W € C*(R’> x M** R) and
P:M*¥3 x M*? x R—R instead of P: R* x M** x M*** x R— R in order to arrive at a more compact
notation. The definition of the adjugate of F € M*** is given in Appendix A, A5-A7 and the properties of
the adjugate are listed in Appendix A, Lemma A.6.

A consequence of the Definition 3.1 for a more restrictive class of energy densities is

Corollary 3.2 (Additive polyconvex functions). Let W(F) = Wi(F) + Wa(AdjF) + Ws(det F). If W, i =1,2
are convex in the associated variable respectively and W; : R* — R is convex in the associated variable as well,
then W is altogether polyconvex.

The last corollary will be one of our primary tools in constructing polyconvex strain energy functions: we
identify convex functions on M*** and R and then take positive combinations of them.
Let w € C°(#) denote the set of infinitely differential functions w that vanish on 04.

Definition 3.3 (Quasiconvexity). The elastic free energy is quasiconvex whenever for all Z c R® and all
F € M*? and all w € C°(%#) we have

W(F)|%|:LW(F)dV< LW(F+Vw)dV.

Definition 3.4 (Ellipticity). We say that the elastic free energy W (F) = /(C) € C*(M**,R) leads to a
uniformly elliptic equilibrium system whenever the so-called uniform Legendre-Hadamard condition

et >SOVF e M¥P Ve ne R DIW(F).(E@n E@n) =€ nl
holds. We say that W leads to an elliptic system if and only if the Legendre-Hadamard condition

VFe M3 . VEne R . D2W(F).((@n,é@n) =0
holds. We say that the elastic free energy W is rank-one convex if the function f:R—R,
f(t)=W(F +t(¢®1n)) is convex for all F € M** and all ¢, € R®.

The decisive property in the context to be treated here is the following well-known property:

Theorem 3.5 (Polyconvexity implies ellipticity). Let (i) W be polyconvex. Then W is elliptic. Let (ii) W be
sufficiently smooth. Then rank-one convexity and ellipticity are equivalent.

The proof of the last theorem is based on standard results in the calculus of variations (see e.g. Da-
corogna, 1989). We remark that the converse is not true.

To obtain various strain energy terms in order to model specific problems, which permit the matching of
data stemming from experiments we assume an additively decoupled structure of i, i.e.

Y= zn:lﬁj(c,M) = zn:lﬁj(c, Cof C,det C,M). (3.23)
j=1

=1

The formal representation (3.23) second part is of interest with respect to the construction of alternative
polynomial bases; this will be discussed in the following sections. We demand that each term y;|j = 1, ..n
has to satisfy a priori the invariance conditions and the polyconvexity condition. It should be noted that
the formal similarity in the list of arguments (3.23 second part), i.e. (C,CofC,e), with the argument of the
convex function P: M*>? x M*? x R—R of definition 3.1, i.e. (F,AdjF,e), is a consequence of the
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material objectivity condition. However, it does not suppose any convexity requirements with respect to
(C,CofC,e) of course. In the following, we first concentrate on isotropic functions, point out some re-
lations to well-known formulations and then focus on anisotropic terms. The additively decoupled for-
mulation (3.23) in the individual invariants leads with (2.6) to the stress response function

LW Oy, OL;
s_z@_zz > 3L 3¢ (3.24)

J=1 Lie?\Iy

The tensor generators OcL; are independent of the specific form of the free energy function. They only
depend on the symmetry of the material characterized by the introduced structural tensors. Although the
symmetry group for transverse isotropy is completely characterized by the invariance group of M, defined
in (3.14), we introduce an additional dependent structural tensor,

D:=1-M. (3.25)

By a simple calculation we see directly that the invariance group of D is the material symmetry group %;.
Thus D is a possible structural tensorial quantity instead of M. The introduction of this additional quantity
is useful for a comprehensive representation and physical interpretation of several terms of the free energy
function.

3.2.1. Isotropic free energy terms

In this section we analyse some isotropic free energy functions which fulfill the polyconvexity condition.
Furthermore, we point out some results for well-known functions. It is sometimes preferable to express
strain energies as a sum of isochoric and volumetric terms. Let F € GL(3, R), then we obtain with (2.2)

C:=C/I, with det[/C] = 1. (3.26)

The ansatz for a free energy function is assumed to be of the form

W(F) = Wio(C) + Wo(det F). (3.27)

We will show that this ansatz is compatible with the requirement of polyconvexity. Let for example

Wi(A) = (H,1) and define iso(F) = C. Then

- IFI?
Weo( €) = Wiliso(F)) = { arf 0" 9F >0 (3.28)
00 for det F<O0

and W (F) = W, (iso(F)) is a polyconvex function (however not of the additive type, Corollary 3.2) which we
proceed to show in Appendix C, Lemma C.1. For the remainder let us agree to extend functions W, which
are naturally only defined on the set det F > 0 to M**® by setting W = oo for arguments with det F <0 as
we did in the last example. It is clear by such an extension that W can never be convex, for it is supported on
a non-convex set only. However, this extension is compatible with the requirement of polyconvexity since

P(x) = {f ) x>0 (3.29)

00 x<0
is a convex function whenever f is convex on R*. Some polyconvex, isotropic free energy terms which we
will use for the identification with the linearized standard moduli at the reference configuration and for the
simulations are
I I’

Yyi=ouly, Yy = 0€21127 Yy = a3[1T’ Yy = “411% (3.30)
3 3
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/ /

(a) isotropy plane (b) isotropy plane

Fig. 2. Physical interpretation of the polyconvex invariant function /; /131/ .

with all o; > 0. The first and second terms are powers of traces of the right Cauchy—Green tensor, while the
third one is an isochoric term and the last one is the product of the functions of the invariant expressions
appearing in , and V.

For the physical interpretation of the isotropic invariant function /; /I we consider a cylinder of unit
length and unit diameter (see Fig. 2a). A deformation described by the deformation gradient F =
14 (A —1)a® a, with ||la|| = 1, leads to a final conﬁﬁuratlon as outlined by the outer cylinder in Fig. 2b.
The isochoric part of F, i.e. the term F = (det F)"'/°F, and thus the quadratic function in the remainder
L/ ¥ — trC = |F|’, controls only the isochorlc part of the deformation. In the considered example only
the shaded volume in Fig. 2b is affected by this invariant. For the anisotropic case we will discuss this from
a different point of view.

The convexity of 1%, i.e. F[tr(F'F )], k = 1 can be proved by the positivity of the second derivative.

Proof. (1) With the identity [tr(F'F)]* = ||F||** we obtain

Dy (IFI™).H = 24| FIP* > (F, H)

D3 (IFIP).(H, H) = 2k (IFIP 7 (HLH) + (2K = 2) | FIPF, H)) > 0.

The proof of the polyconvexity of the terms /f /131/ Sfork>11is given in Lemma C.3, Eq. (1) (see the
Appendix). In an analogous manner we construct free energy terms in the second principal invariant /,. For
the following analysis we choose the four terms

b 12
Vs i=mh, Yei= ;12[22, Yy = ’1311Ta g = ’74[1% (3.31)
3 3

with 7, > 0. The interpretation of these terms is similar to the functions presented in (3.30) with the
modification that the surface deformation of the considered infinitesimal volume element is controlled; this
can be seen directly by I, = trCof C = ||Cof F||* and taking (2.3 first part) into account. The proof of
polyconvexity of (3.31) is straightforward by replacing F with CofF in Proof (1). Furthermore, terms in
traces of powers of C are also convex, i.e.
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Ftr[(F'F)"] with k> 1

is a convex mapping. This function allows the direct usage of the basic invariants (3.17) for the construction
of polyconvex free energy functions.

Proof. (2) Set C = F'F, then the first and second derivatives with respect to C are

D¢ (tr[CY).H = Dc((C*,1)).H = k(C*' H),

D% (tr[CY)).(H,H) = k(k — 1)(C"*H,H) > 0.

Thus D¢ (tr[C*]) = kC*' € PSym and D% (tr[C*)).(H, H) > 0 which allows us to apply Lemma B.5; in this
regard see the Appendix. [

As examples for some volumetric terms in det F or det C we consider the expressions

1
Yo =013, Yyp:=—0d21n \/E Yy =03 (]3 +—>,

| & (3.32)
Yip = 0a(ls — )7, Yy = ds -

3

with J; = 0. Further examples for polyconvex volumetric free energy terms are
Fi (det C + e —2)" with & > 1
k

FH((detC)uW—z) with k> 1,p >
F(VdetC —1)* with k > 1 (3.33)
F— (det C — In[det C])
F— (det C — In[det C] + (In[det C])*)

On the natural domain of definition det F > 0 the given functions are convex in the variable det F. The
terms in (3.33) are each polyconvex and lead to a stress free reference configuration. Furthermore, the
following isochoric terms are polyconvex and stress free in the natural state:

2% i
F— IF] -3 withi > 1,k > 1
(det F)3
|Adj FI* '
Fio 17 (3V3) with j > 1,k > 1
(det F)* (3.34)
AP ) .
F*—)CXp W_?’ —1 Wlthl}l,k?l
etF)?
. 3k J
F— ex lIAdiFI™ 33| | -1 withj>1,k>1
P (et p)™ /
(]

For the proof of this statement see the Appendix, Lemma C.5 and Corollary C.6. The treatment of the
isotropic case has been taken from Hartmann and Neff (2002). For the explicit derivations of the stress
functions and the moduli we choose from (3.34) the terms
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2
3
Vi = oy <1§% — 3> , W5 = w2<%— (3\/§)2)
3
Ve = co3<exp [13{%— 31 - 1)7 Yy = w4<exp [%_ (3\/5)2] _ 1>

with @; = 0. The above isotropic terms of the type

2 i
W(F) = _IFI” -3 withi>1
(det F)3

have the convenient property that W(1) = 0 in the unstressed configuration and W (F) = 0. Hence the
reference configuration is automatically stress-free. This contrasts with known polyconvex functions such
as compressible Mooney-Rivlin materials, where only by a judicious choice of parameters can the reference
configuration be made stress-free. The polyconvexity of these terms is shown in Hartmann and Neff (2002).
Of course, the terms are objective and meet various growth conditions necessary for the successful appli-
cation of the direct methods of variations to prove the existence of solutions for a corresponding finite
elasticity boundary value problem.

The stresses related to the above free energy terms can be obtained by exploiting (3.24). All terms are
formulated in the principal invariants I, I, I3, so we arrive at

N zzzz{alp o,y o By, 613} (3.36)

(3.35)

w\l\)

ol C ' 3L dC ' AL oC

With the derivatives of the principal invariants with respect to C, which are given by

I 1
26
oC
ol 1
a¢ = detlClC : (3.37)
oL d(det[Clr[CT']) O 5
- e - tr[C™'] det[C|C det[C]C
we obtain with Cof C = det[C]C™" the stresses in the form
o alp/ lpj -1 -1 alpj
22{ o A (tr[C™"]Cof [C] — C~'Cof[C]) +a—13COfC}. (3.38)

Multiplying the Cayley-Hamilton theorem for the characteristic polynomial of the argument tensor with
C' leads with tr[Cof C] = trC ' det C to the expression

tr[C']Cof [C] — C ' Cof[C] = tr[C]G™' — G 'CG ', (3.39)

which simplifies (3.38). In this manner we arrive at the representation

0 0 0
S, _zz{<—+i 1)G— a’i’c CcG™! +a—‘i’c fC} (3.40)

The material tangent moduli are denoted in index-representation by C{*®” :=20.,5/%. Based on the
formula (3.40) we arrive with 8*y/(07;01;) = 8%y /(31;31;) at
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Y, Oy, Py,
ABCD AB ~CD AB CD AB CD
C 4§ j azlazlG G +a[ o _{1,G - CY*{1,G - C} +az A _{CofCY*{CofC}
+ le [GAB{] G C}CD + {I G C}ABGCD] azlp [GAB{C fC}CD+ {COfC}ABGCD]
oL al, ! oLl
2‘// AB CD AB CD w AB D A BD
+ [{1,G — C}"*{CofC}*’ + {Cof C}**{1,G — C}"| + L [G"*G” — G'“G*"]
oL, 0l, ol
oy, _ _
+—’Iz[{C P — {7 (3.41)

In (3.41) {C }CD is an abbreviation for the index representation of G™'CG ™" in order to arrive at a compact
formulation.

3.2.2. Anisotropic free energy terms

For the anisotropic part we construct several terms in an analogous way to that pointed out above, see
also Schroder and Neff (2001). Before starting the construction and discussion of several polyconvex,
transversely isotropic functions we have a look at often-used direct extensions of the small strain theory to
the case of finite deformations by substituting the linear strain tensor with the Green-Lagrange strain
tensor E := %(C — G). A typical form of such an extension is the quadratic function in E e.g.

Yy = & (trE)? + extr[E?] + éstrEtr[ME) + &,(tr[ME))* + ¢str[ME?). (3.42)

Since formulations like (3.42) in E are a priori not polyconvex and not elliptic, we consider a different
formulation in the right Cauchy—Green tensor which has some superficially similar characteristics to . So
let us consider the quadratic free energy function in terms of the elements of a polynomial basis in C and
M, ie.

Ve =i +exs + &1 Js + e + esJs + Csf + Crfur, (3.43)

where f; and f), are functions which we introduce in order to fulfill the condition of a stress-free reference
configuration with respect to the tensor generators G~' and M, respectively. The first and second terms are
polyconvex, see the proofs in the last section. The term 7;J; does not fulfill the polyconvexity condition, i.e.
the expression

F—tr(F'FM)tr(F'F) = trf[CM]trC = 1,J,

is not polyconvex, because it is not even elliptic and hence not quasiconvex.

Proof. (3) The last equation can be expressed in the form
tr[FTFM|tr[F'F) = || F|]*|| Fal|;.

Calculating the second differential with respect to the deformation gradient yields
D (|FIP||Fallz).(H, H) = 8(F, H)(Fa, Ha)gs + 2||Fal[5 | H||* + 2| F||*|| Hal |5

We see that this expression is in general non-positive (take F, H in diagonal form), which excludes con-
vexity. However, it is possible to show the non-ellipticity as well. Take

1 0 1 1 1
0], ¢=10}), n={n), a=1{0
1 0 0 0

F, =

o O I=
o= |

n
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and H = ¢ ® 5. This yields
Dy(|[F|1||Falli)-(¢ @, & @) = 8(F, & @ n)(Fa, & @ na)gs + 2| Fall3: || € @ nl|* + 2] F|*[|¢ © nallz

1 11 , 1 16
_8<;—n>2+2E (1+n )+2(3ﬁ+1) = -4

If we choose n > 2, then we get
D (|IF|*||Fal[3)-(& @ n, ¢ @ n) <O
Thus, the non-ellipticity of the function /,J; is shown. O
Now we analyse expressions in powers of the basic invariant J;. The polynomial functions
F— (tt[F"FM))" = (tr[CM))* = J¥  with k > 1
are polyconvex. For the proof of this we check the convexity of Jf with respect to F.

Proof. (4) The first and second differential of the expression (tr[FT FM))" = (F, FM)" with respect to F are
given by

DF<<F, FM)") H = k(F, FM)*"'((F, HM) + (H,FM)) = 2k(F, FM)""'(F, HM)

D§(<F, FM)k) (H,H) = 4k(k — 1)(F, FMY**(FM, H)* + 2k(F, FMY"""(H, HM) > 0,
respectively. For the evaluation of the single terms see Lemma A.12, Eq. (15). O

In (3.44) we summarized some functions in the invariants J; and /5 which are polyconvex,

A J?
Vig = PBids, W9 = ﬁzjja Yo = ﬂ}ﬁa Yy = ﬁ4]1% (3.44)
3 3

with B, > 0. The term /4 characterizes the square of the stretch and i/, the quartic stretch in the preferred
direction. With the function J, /I, ¥ — C : M we can cover the square of the stretch in direction a due to the
isochoric part of the deformation. The last term in (3.44) is not decoupled with respect to the volumetric
and isochoric deformations. Other possibilities for higher order terms are given in Lemma C.3, Eq. (2).

Now we analyse terms in the mixed invariant Js. The following term is not elliptic and hence non-
quasiconvex:

F—tr[F"FF'FM| = tr[C*M] = Js.

Proof. (5) The forms of the individual expressions are
tr[F"FF'FM) = ||F"Fa|[}:.

First we compute the second derivative of the function with respect to F

DA(||F'Fa|}).(H, H) = 2(F'Fa, H'Ha) ;s + ||(F'H + H"F)a}s.
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Set H = £ ®@n with [|€||gs = ||]lps = 1. This yields after some manipulations
2
Dy (|| F Fal|)-(¢ ©n, & @ n) = 2(Fa, Fr)g (1, @) s

+ (1, @) | FT el + (FTE a)g + 20FTE ) (n, @) s (FTE, ).
Take the explicit expressions

1 00 0 1 1 (1! 1 1
Foi={0 2 0), ¢={0] |FelP=—5, a=— (1], n=—x|-1
00 ! 1 " V3l Vil
This leads to
1 1
<FﬂaaFn17>[R3 :_l+ﬁa <a7n>R3 :g
and altogether we have for some reasonable n
2\1 4
2 T 2
DF(||F,,FnaHR3)~(£®'77€® n) < (— 2+ﬁ) g“r; < 0.
Observe, that the isotropic counterpart tr[C?] = ||[F'F||* is a convex function of F (see Proof (1)). [

Up to now we can conclude that we cannot use the invariant J5 and the polynomial invariant 7;J; as
single terms for the construction of a free energy term. To take into account quadratic expressions of these
terms within the ansatz functions we remember that Cof[C] is a quadratic function in the right Cauchy—
Green tensor. Furthermore, it seems reasonable from a physical point of view to construct a polynomial
mixed invariant, which reflects the deformation of a preferred area element of an infinitesimal volume of the
considered body. With this geometric motivation we start with the characteristic polynomial of the matrix
C (see the Cayley-Hamilton Theorem A.8). Multiplication of the characteristic polynomial with C~'M
yields with CofC = AdjC

C*M — I,CM + LM — Cof[CIM = 0. (3.45)
Taking the trace of the Eq. (3.45) leads with the abbreviations (3.16) and (3.19) to the expression
K1 = tr[Cof[C]M] = J5 — 11J4 +]27M7 (346)

which is a polyconvex polynomial function in the non-polyconvex individual terms J5 and J,/;. The proof of
the convexity of the powers of K is straightforward by replacing F with CofF in Proof (4). Thus K
represents a quadratic and polyconvex expression in C which replaces the non-elliptic term Js. Based on the
definition (3.46 first part) of K; we can give a rather simple geometric interpretation of this polynomial
invariant. Starting from

Ky = tr[Cof[C]M] = Cof [F'F] : a® a = (Cof[F]a)(Cof[Fla) = ||Cof[Fla]*, (3.47)

we see that /K| = ||Cof[F|a|| controls the deformation of the area element with unit normal a. Consider the
deformation of a unit cube with F = diag(4,, 4,, 43) where A; represents the stretch in preferred direction,
then we arrive at /K| = A;4,. An illustration of this simple example is given in Fig. 3a where A/, is
represented by the shaded area.

Let us now specify some representative polyconvex functions in the invariants K; and /;:

Vo =71K1, Yy = V2K127 Yoy = “/5Kf7

K, K} (3.48)
U2 V31 Yae = Véz_/l3
I L
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(a) isotropy plane  (b) isotropy plane

Fig. 3. Geometric interpretation of the the polynomial invariants: (a) K; and (b) K3.

with y, > 0. It should be noted that K, /7)"* and K3/ /> are coupled volumetric—isochoric terms. In Proof (4)
we have seen that powers of tr[CM] are polyconvex; these functions represent powers of the stretch in the
preferred direction. As such it seems to be elemental that stretches in the isotropy plane also make sense as
specific ansatz functions. For the construction of such further mixed terms we use the redundant structural
tensor (3.25). We obtain the polynomial invariant

Kz = tr[CD} = [1 —J4, (349)

which represents the square stretch in the isotropy plane relative to the undeformed state. Of course, it is
not necessary to introduce this redundant tensorial quantity with regard to the polynomial basis, but for the
analysis of the convexity properties it is helpful. With the relation

Ky = («[F"F(1 = M)))" = (|FI* — || Fallzs )", (3.50)
we may apply the same reasoning as in Proof (4). Observe that
(IFI* = ||Fallgs) = 0 if [laflps = 1

(see also the discussion in the Appendix Lemma C.2). With the same physical motivations as used for the
construction of K| and K, we are now looking for a polynomial invariant which controls the area elements
of an infinitesimal volume, characterized by normals lying in the isotropy plane. Using Cof F instead of F in
(3.50) we obtain for the exponent & = 1 the expression

K3 = tr[Cof[C]D] = 11J4 —J5 +Il(1 _IM) = ]1J4 —J5. (351)

As K, K; represents a quadratic and polyconvex expression in C. In an analogous way to the geometric
interpretation of K; we can interpret the polynomial invariant K;. After some algebraic manipulations of
(3.51) we obtain

= tr[Cof [C]D] = ||Cof[F]||* — ||Cof [Flal”, (3.52)

we see that 1/K; controls the deformation of an area element with a normal in the isotropy plane, i.e. with a
normal perpendicular to a. Consider again the deformation of a unit cube with F = diag(4,, 4, 43) with 3
being the stretch in the preferred direction. Thus Ay A2 /present the stretches of the edges of the unit cube in
the isotropy plane and we arrive at /K3 = Z3(4; + /12 An illustration of this is given in Fig. 3b; the area
element A (Az + /12)1/ % controlled by Kj; is shaded. Some possible polyconvex functions in K,, K3 and /5 are
listed in (3.53)



418 J. Schroder, P. Neff | International Journal of Solids and Structures 40 (2003) 401-445

Yo = $1Ka,  gg = ¢2K22a Yy i= 3Kz, Y3 = ¢4K32’

K2 K3 KZ K2 (353)
¢31 = (ﬁsm’ lp32 = ¢611T, lp33 ¢7 2/33 lp34 ¢8 1/3

with ¢; > 0. For the proof of the polyconvexity of y,,i = 31,...,34 see Lemma C.3. Before considering
further, more complicated, functions we give a physical 1nterpretat10n of the terms in K, /I and K3 /131 s,
As a simple example we consider a process with det F = 1 which is constant over the considered domain.
The isochoric part of the deformation of the cylinder shown in Fig. 4 is given by F = diag(4**, 273, .7'?);
let

Vi i= cH||Cof F||* = ¢ (A3 4+ 2023)

be one part of the associated isotropic free energy. On the other hand we consider an anisotropic energy
term of the form v, := ¢} K,/L,”* + ¢;K3/I,". For the assumed isochoric process i, can be rewritten as

. = cT||Cof Fa|* + ¢t (||Cof F||* — ||Cof Fa||*) = ¢; A~ + 2¢1 12,

This equation states that the energy associated with the isochoric deformation can be weighted with respect
to the deformation of the area elements characterized by normals in preferred direction and within the
isotropy plane. So in general it should be possible to obtain at least one energetic equivalent isochoric
deformation which differs from the one in Fig. 4a. Set e.g. ¢; = ac™ and ¢f = f(a)ct with o, f(a) € R,.
Then we arrive with the condition of equivalence of the energetic terms y,,, = V¥, at

f(o0) = 14221 —a),

with o € (0, 1). Here A characterizes a fixed value of the deformation for which the energetic equivalence is
postulated, thus it is no variable. A visualization of such an equivalent configuration is depicted in Fig. 4b.
For o = 1 the parameters are ¢* = ¢] = ¢; and we arrive at the isochoric representation.

Examples for further polynomial invariants in elements of the polynomial basis £, are listed in (3.59). As
shown in Proof 3, the term J4/; = tr[MC]JtrC is not elliptic and hence not polyconvex. Let us now consider
an ansatz function of the form

F—||F|* + | F|||Fal|* = I} + 1Ju, (3.54)

A—l/:i a

a/_\2/3

32/3

isotropy plane

(a) (b)

Fig. 4. Interpretation of the polynomial invariants K /131/ 3 and K /131/ 3 for an assumed isochoric deformation process. Picture (a) shows
the isochoric deformation of the uniaxial stretched cylinder of Fig. 2 and Picture (b) represents an energetic weighting of the parts
controlled by K, /I}* and K3/1)°.
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which is convex in F. The proof of this is given in Lemma C.2, Eq. 4. Replacing F with Cof F yields yet
other polyconvex functions, so we obtain

Vs == 1 {(trC)’ + u[MCuC} } (3.55)

W36 == K2 { (tr Cof C)* + tr[MCof Cltr Cof C}

It should be noted that tr[M Cof C|tr Cof C alone is also not elliptic. In an analogous way we can construct
polyconvex functions which include the non-elliptic terms tr[DCJtrC and tr[DCof C|tr Cof C. Consider the
convex mapping

F2|F|* + ||FIP|F(1 = M), (3.56)

or alternatively in CofF instead of F. For the proof, see Lemma C.2, Eq. 5. Thus we obtain

(3.57)

Yy = 14{2(trC)* + tr[DC)trC}
Yag = K5{2(tr Cof C)* + tr[DCof Cltr Cof C} |

On the other hand the difference of some polyconvex functions could be of interest in order to get further
ansatz functions. For this reason let us define the free energy terms

'7039 = K6{a1+(trC) - bf(tr[MC])} } Wlth {ar > bT (358)

Vi = K7{az (trCof C) — b (trf[MCof C])} ai = by’

with the positive constants a;, b, i = 1, 2. The convexity of these equations with respect to F and CofF is
obvious, due to the convex1ty of tr[CD] trC — tr[CM| and tr[Cof CD] = tr Cof C — tr[M Cof C]. The ex-
pressions of the functions v,,i = 35,...,40 in the elements of the polynomial basis 2, are given in (3.59),
where we have chosen the constants a; = 3, b =2, aj =3, by =2.

lp35 = K'l(]lz +J4[1), lp% = K2(2[22 + [2J5 - ]1[2]4)
V3 = ka3 = I Ja), g = Ks(215 + i Ja — IoJ5) (3.59)
Yo 1= K6(301 — 2Ja),  Yag = K7(lr — 2J5 + 211J4)

with x; > 0. The proof of the convexity condition for the individual terms is given in the Appendix (see
Lemma C.2). Examples of generic anisotropic exponential polyconvex functions are given in Appendix C,
Lemma C.4. In this context see also the examples of some representative non-elliptic functions in Appendix
C, Lemmas C.8 and C.9. With the variety of polyconvex, isotropic and transversely isotropic free energy
functions derived above, it should be possible to model a wide range of different physical stress—strain
relations. The stresses appear with (3.40) in the form

S:=S5 +2Z{Zf4f o, (CM+MC)} (3.60)

The material tangent moduli C appear with (3.41) in index-representation in the form
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n 2 62
CABCD _ C?BCD i 42 oY, MABMDP L _— 7T {CM + MC}AB{CM + MC}CD
=1

0J40J4 oJs 6J
+ U Gagen g Gen) TV G ICu 4 MO+ {CM 4 MCYP G
01, 0J4 6[1 0Js
2 2
Wj AB 5 #CD AB cD lﬁ B o
35 116 = CY "M@ + ML G = CYP) 4+ 52 {1 G — €Y CM + MC}
+ {CM"‘MC}AB{[]G _ C}CD] a[ aJ [{C fC}ABMCD MAB{COfC}CD]
Y,
T Z} [{CofCY*{CM + MC}™ 4 {CM + MC}**{Cof €}
le AB oy | O,
+ e CM + MCY M 4 MP{CM + MC) ] + (G M + MG
5

(3.61)
Here terms like (o)*” characterize the contravariant index representations of the individual tensor ex-
pressions, e.g. {CM + MC}" denotes G CcpMP® + MACCcpGP2.

3.3. Spatial formulation

For isotropic material response the Kirchhoff stresses = can be derived directly by the derivative of the
free energy function with respect to the Finger tensor b := FF' (see e.g. Miche, 1994). For the anisotropic
case the Kirchhoff stresses and associated spatial moduli ¢ can be computed via a push-forward operation
of the second Piola—Kirchhoff stresses § and the associated moduli C, i.e.

b = FansAB and Cabcd FanFLFdCABCD (3 62)
or by a direct evaluation of the Doyle Ericksen formula (2.6 second part). Regarding C as a function of the
point values of the deformation gradient F and the spatial metric g, we are left with C = Cc (F,g) (see
Marsden and Hughes, 1983). The only modification of the stress functions (3.60) in combination with (3.40)
is referred to the tensor generators, because the derivatives of the free energy function with respect to the
invariants remain unchanged. Thus we only need the derivatives of the invariants with respect to the co-
variant metric coefficients, e.g. we obtain for

ol  O(FjF§g.G"™)
agab agah
which is the index representation of the Finger tensor b. In an analogous way we get the derivatives of the

other invariants. In direct notation we obtain the expressions

ol otr[C(F,g)]

—_ FZFISGAB — bab7

% g 2

oh_ o2, Lel(CF

Og og Og

o 0 oC(F,g) . _, 3.63
ag = aCA. ag —I3g . ( . )
Wi OAC(Fg):M_ . o

og _Og ,

Vs l(CFIM oo

Og Og
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In this direct representation we have dropped the obvious dependence of the quantities with respect to the
metric tensors. Finally the Kirchhoff stresses appear in the form

oy; oy oY, oY oY,
=2 Ry IR+ g - — ba ® ba 3.64
g Z{(azl o 1) oL Y ARl gy ety hanba (3.64)

The spatial moduli can be derived by ¢ = 20,7(C(F, g)). For this derivation we have to take into account
the intrinsic dependence of b* with respect to g, i.e. the index representation of the square of the Finger
tensor is given by b*g.,b%. The computation of the spatial moduli is straightforward and therefore omitted
here.

4. Stress free reference configuration and linearization

In this section we analyse the free energy functions with respect to the natural state condition, i.e. the
stresses have to be zero in the reference configuration. Furthermore, we are interested in the linearized stress
quantities near the reference configuration in order to identify moduli obtained by the invariant formu-
lation with some well-known linear transversely isotropic moduli. The natural state is characterized by
F =1 and the invariants have the values

11:3, 12:37 13:1, J4 :Js ZIM:U'MZI. (465)

Consequently the stress condition for the natural state, i.e. S(1) =0, leads with (3.40) and (3.60) to the
equation

O O,
22{(611 @*E)‘*(aﬁ”@)“}ﬂ (4.66)

The linearized moduli C, at the reference configuration are obtained by linearization of the stress response
functions (3.40) and (3.60). Thus we obtain with the Green—Lagrange strain tensor E := (1/2)(C — 1), the
equation

Lin[S] = S(1) + C, : Lin[E] with Cy := 20.S/|, = 432y, (4.67)

The terms Lin[S] =: ¢ present the linearized stress tensor and Lin[E] =: & the linearized strain tensor in the
reference configuration, respectively. The classical matrix notation of transverse isotropic material response
in the case of small strains is given with the X3-axis as axis of symmetry by the linear relationship

a1 Cu Cip Cp 0 0 0 &11
) Cn Cu Ci 0 0 0 &n
g | | Ciz Ciz Cs 0 0 0 €33
[P - 0 0 0 %(C]] — C]z) 0 0 28]2 (468)
0_'23 0 0 0 0 C44 0 2823
013 0 0 0 0 0 C44 2813

From (4.67) it follows that the linearized moduli are obtained by evaluation of (3.61) at C = 1. The lin-
earization of (3.61) with (3.41) leads to

CgBCD _ ClGABGCD + Cz{GABGCD _ GACGBD} —|—C3MABMCD +C4[GABMCD +MABGCD]
+ c5(G'“MPP + M G"P) (4.69)
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with the abbreviations

oMY, oy, Y, Y, oy, oMy,
01:427?: < lp./ +4 lpj + lp] +4 lp] +2 l//./ +4 lpl)

0l,01, 0L0l, 0L0L oLl 0501, 06,01,

42/ l<l// ai)

Ry, dy, By, 4
e =42 <6J46J4 s T 6J46J5>

. [y, oy, &y, Ry, Y, oy,
ca=42 <611 on 2anor T Panas T Yanass Tanos, T 2 anas

oY,
42/ laJS

With the X;-axis as the axis of symmetry we have a = (0,0,1)", M = diag(0,0, 1) and with the same index
arrangement as in (4.68) we obtain from (4.69) the linearized moduli

i C1 c1+ e c1+cr+cy 0 0 0 T
cl1+ e C| c1+ ¢+ ey 0 0 0
cir+cr+cey e+t CI+C3+2(C4+C5) 0 0 0
—C
Co = 0 0 0 - 0 0 (4.71)
0 0 0 0 =22 9
Cs —C
0 0 0 0 —
L 2

From Eq. (4.66) and the comparison of (4.71) with the matrix representation of the classical moduli (4.68)
we obtain seven equations for the identification of the linearized moduli of the invariant formulation. This
is consistent with the minimal number of ansatz functions for a quadratic free energy function introduced
in (3.43). We need a minimum of five parameters (functions) to identify the individual moduli and two
parameters (functions) to fulfill the condition of a stress-free reference configuration.

Remark. As a special case we obtain a family of Ogden-type materials for isotropic material response (see
Ciarlet, 1988). We choose a compressible Mooney-Rivlin model of the form

Vi := o tr[C] 4+ mtr[Cof C] + 6,J* — 8, 1In(J), (4.72)

with J2 = det C. The two isotropic moduli near a natural state are characterized by
1
Cis=Cpn, Cyu=Cuy, Cu= Z(C” —Cp). (4.73)

From the condition of a stress-free reference configuration (4.66) we obtain the equation
20(1 + 41’]1 + 251 — 52 =0. (474)
The relations between the Ogden-parameters and the isotropic moduli are

41’]1 +451 = (]:12 and 252 = (]:11. (475)
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The solution of the three equations (4.74) and (4.75) for the four material parameters (J,0,,21,1,) € R is
o= [Ci + (£ —2)Cpo)/4

’(’3’: — 2{01226”/4 with ¢ € (0,1). (4.76)

0y :=Cy1/2
Let us introduce the expressions of the isotropic moduli in terms of the Lamé constants A and u, then we
get Cy; = A+ 2u and Cy, = 1. We see that it is always possible to choose a set of positive parameters for

4> 0and u > 0 that satisfy (4.76) with (J;, 05, 21,1,) € R" (see Ciarlet, 1988, pages 185-190). As a second
example we consider a compressible Neo-Hookean model characterized by (4.72) with 1, = 0. In this case
we obtain the identification from (4.76) for ¢ = 1, which means that we need a minimum of three material
parameters in order to fulfill the above mentioned conditions.

5. Extension to orthotropic material response

In this section we discuss the construction of polyconvex orthotropic free-energy functions. Orthotropic
materials are characterized by symmetry relations with respect to three orthogonal planes. The corre-
sponding preferred directions are chosen as the intersections of these planes and are denoted by the vectors
a, b and ¢ with unit length. Thus (a, b, ¢) represents an orthonormal privileged frame. The material sym-
metry group is defined by

ga = {I;S17S27S3}, (577)

where S, S», S5 are the reflections with respect to the basis planes (b, c), (c,a) and (a,b), respectively.
Based on this, we obtain for this symmetry group the structural tensors

'M:=a®a, *M:=bxb and *M:=c®ec, (5.78)
which represent the symmetry group (5.77). The structural tensors fulfill the conditions

M =M, tM=1 'MM=0 fori#j, i,j=1,2,3

('MC + C'M) + PMC + C*M) + *MC + C*M) = 2C (5.79)

tr[! MC] + trPMC] + trPMC] = trC
(see e.g. Boehler, 1987). Due to the fact that the sum of the three structural tensors yields Zle M =1we
may discard 3M from the set of structural tensors (5.78). So the integrity basis consists of

Py = {1, I, 13,J5,J5,J6, J7; Ty, by} ot Pai={y, ... Jr; Loy, By} (5.80)
The principal invariants (/;,5,[;) and the basic invariants (Ji,J,,J3) are defined in (3.16) and (3.17),
respectively. The irreducible mixed invariants are given by

Jy:=t['MC] Js :=t[|MC?, Js:=trMC], J;:=tr?MC” (5.81)

(see e.g. Spencer, 1971). Furthermore, the remaining trivial invariants are defined by i), := tr'M and
L,, := tr’M. For the construction of the free energy function we assume the form

V=> Uil €?;)+c forj=3 orj=4, (5.82)
k

where each function y, has to satisfy the polyconvexity condition a priori. All proposed polyconvex
functions in the above sections in terms of C and M can be used by interchanging M with 'M, >M or *M.
This holds also for the terms in D; for this it seems advantageous to introduce the tensors ‘D =1 — ‘M for
i=1, 2, 3. Based on this approach we obtain a variety of polyconvex functions in a straightforward
manner, where the expressions in M and ‘D, i = 1, 2, 3 can easily be expressed as polynomial functions in
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terms of the elements of the integrity bases 25 or 24. The proofs of the polyconvexity of functions gen-
erated in this manner are already given above. Up to now we have only proposed individual polyconvex
functions y, in terms of (C,'M) or (C,?M). For a general formulation we also need ansatz functions
which include multiplicative terms in the mixed invariants with respect to different structural tensors. Often
used terms in classical formulations, such as

JuJs = [\ MCltPMC) = || Fal]’||Fb|%, (5.83)

are not polyconvex. The proof of the non-convexity of this term is straightforward (in this context see also
Remark B.8, Appendix B). To overcome this problem we consider powers of linear convex combinations of
positive polyconvex functions. Consider two convex functions P (X,Y) > 0 and P,(X,Y) > 0, then func-
tions of the form

P:=[AP(X,Y)+ (1 - )P(X,Y))?, 2€(0,1) and g€ N, (5.84)

are polyconvex (see Corollary B.7). Thus we are able to construct a variety of free energy terms which
involve multiplicative coupled terms in the mixed invariants associated to different structural tensors, e.g.

[Atr[MC] + (1 — )t MC))*

i MC) + (1 — /l)tr[fMCofC}]q} with 1€ (0.1), i #J, g €N, (5-85)

with i, j =1, 2, 3. If we choose e.g. ¢ = 2, then (5.85) first part leads with i = 1 and j = 2 to the invariant
representation

P2I2 4201 = A)Jads + (1 — 2)°J2 with L€ (0,1), (5.86)

which has a multiplicative term in the mixed invariants of the traces of the product of (C,'M) and (C,’M).
Thus it is possible, in principal, to construct a wide variety of functions which are related in some sense to
the classical formulations of orthotropic materials in the invariant setting.

6. Variational formulation and finite element discretization

In the following we give a brief summary of the corresponding boundary value problem and finite
element formulation in the material description. Let 4 be the reference body of interest which is bounded
by the surface 0. The surface is partitioned into two disjointed parts 0% = 0%, | 0%, with 04, (0%, = 0.
The equation of balance of linear momentum for the static case is governed by the first Piola-Krichhoff
stresses P = FS and the body force f in the reference configuration

Div[FS] +f =0. (6.87)
The Dirichlet boundary conditions and the Neumann boundary conditions are given by
u=u ond#, and t=t=PN on 0%, (6.88)

respectively. Here NV represents the unit exterior normal to the boundary surface 0%,. With standard ar-
guments of variational calculus we arrive at the variational problem

G(u,ou) = / S:0EdV + G with G := —/f" (5udV—/ toudA, (6.89)
B B 0%,

where JF :z%(éFTF + F'6F) characterizes the virtual Green-Lagrangian strain tensor in terms of the
virtual deformation gradient oF := Graddu. The equation of principle of virtual work (6.89) for a static
equilibrium state of the considered body requires G = 0. For the solution of this non-linear equation we
apply a standard Newton iteration scheme, which requires the consistent linearization of (6.89) in order to
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guarantee the quadratic convergence rate near the solution. Since the stress tensor S is symmetric, the linear
increment of G denoted by AG®™" is given by

AG(u, du, Au) = / (E : C: AE + SFSAF")dV, (6.90)
where AE :=1(AF TF + F'AF) denotes the incremental Green—Lagrange strain tensor as a function of the
incremental deformation gradient AF := GradAu. The spatial discretization of the considered body
B~ #° with ng. finite elements #° leads within a standard displacement approximation
u= }‘Sl N'd,, du= }‘ill N'6d,;, and Au= ?ill N'Ad,, of the actual-, virtual-, and incremental-dis-
placement fields, respectively, to a set of algebraic equations of the form which can be solved for the so-
lution point d. For a detailed discussion of this point we refer to the standard text books (Zienkiewicz and
Taylor, 2000, Hughes, 1987 and others).

7. Numerical examples

In this section we analyse a three-dimensional tapered cantilever and a two-dimensional perforated plate
with centered hole. In the first example we point out the influence of the anisotropy and in the second
example we discuss the influence of the orientation of the preferred direction and compare the results for
two sets of material parameters. The corresponding linearized moduli at the reference configuration are
given for both material sets within the invariant formulation and in the classical notation.

7.1. 3D-analysis of a tapered cantilever

In this example we consider a tapered cantilever clamped on the left hand side and subjected to a
shearing deformation AF in vertical direction with ||F|| = 1 on the right hand side. Here 4 denotes the load
parameter. The system and the boundary conditions are depicted in Fig. 5a and b shows the reference
configuration, discretized with 20 x 20 x 5 eight-noded standard displacement elements in horizontal,
vertical and thickness direction. The thickness of the specimen is set to 1.

! AF P
. 1
_ 1]
16 s
T
B I g 8 8 s O o o
1 R
B o o g o 8 s S S
o ,//:,;;/;‘,;///
=11 ol I o g 1
/;/;//:,’ﬁ// 7
Crd e
EPEe st 7
T P e
/"/’/ PP 7
Ll
A [
44 pore257%
L1
PAezeY,
?
147
1
e / -
(a) . 48 | (b)

Fig. 5. Tapered Cantilever. (a) System and boundary conditions; (b) discretization with 20 x 20 x 5 = 2000 eight-noded brick ele-
ments.
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The chosen free energy function  consists of seven additive terms x/;j, in detail

V= Wl b0y, i, Js) with gli=1,...,7 = y,li = 1,13,19,25,30,31, 33, (7.91)
=1
respectively. The number of ansatz functions is consistent with the treatment of the compressible Neo-

Hookean material in the isotropic case, which requires three terms, see the end of the remark in Section 4.
In this context see also the interpretation of Eq. (3.43). It should be noted that the function

lpl(ll) = ocltrC (792)

is linear in the invariant 1;. As such it only effects the Second Piola—Kirchhoff stresses, i.e. y,(/;) leads to a
positive volumetric stress contribution. An anisotropic counterpart is yr,4(J4); this linear term in Jy leads to
an anisotropic stress contribution with respect to the tensor generator M. The remaining parts are

U (L) = 851/ det €

¥s(Ja) = By (tr[MC])?

Ul 1o, 15, Js, Js) = 3tr[M Cof C]/(det €)' 793
Ws(Ti,Ja,J5) = ¢y (tr[DCof C])® .
Uo(l1, 15, Ju,J5) = dstr[DC]/(det €)'

U1, 1,04, J5) = ¢ (tr[DCY) /(det €)'

With these ansatz functions we obtain from (4.66) the explicit expression

4 2 16
(2004 575 800435 b = 205 ) Lt (4 = 20+ 85— 295 = 8)M =0 (7.94)

for the vanishing stresses in the reference configuration. The coefficients of the linearized moduli (4.70) are
given by
40 8 8
c1 =8¢, +§¢7 + 895 —g’s +§¢5

8 8 16
(&) :§V3 — 405 *g‘i)s *?¢7

¢ =86, + 8, + 8, (799)
8 8 4
Cy = *§73+24¢4*§¢7+§¢5
cs =4y; — 164,
The chosen material parameters of the polyconvex free energy function in the invariant setting are
oy = 2.6875, ds=136.41, p,=112.21, 7y, =280.393 (7.96)
¢4 =5.7233, s =162.15, ¢, =1.1920 ’ '

The free energy function (7.91) with the parameters (7.96) will be referred to as material parameter set 1
(MS 1) in the following example.
Let the X;-axis be the preferred direction; then the corresponding linearized moduli are

Ci =~ 1215.0, Cip,=445.0, Cj3~=581.0, Cs3~2900.0, Cu =~ 500.0. (7.97)

The two-dimensional version of this test in the linear elastic range is often referred to as the Cook’s
membrane problem. It is a standard test for bending-dominated problems. In the isotropic case the de-
formed structure would be dominated by in-plane deformations. Here we are interested in the influence of
the anisotropic constitutive laws. For the simulation the preferred direction was set toa = (1,1,1)" /v/3 and
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Fig. 6. Tapered Cantilever. Deformed configurations for selected load levels: (a) at 4 = 130, (b) at A = 270 and (c) at 4 = 400.

the load parameter is increased by increments A4 = 1 until a final value of 4 =400 is reached. Fig. 6a—
depicts the deformed structures of the beam at A = 130, 4 = 270 and 1 = 400, respectively. In contrast to an
isotropic material the anisotropic one leads to a salient out-of-plane bending deformation. This enormous
out-of-plane bending is of course initiated by the orientation of the preferred direction.

7.2. Perforated plate with centered hole

In this example we consider a rectangular plate with a centered hole with two different free energy
functions and three different orientations for each. The preferred directions are assumed to be in the plane
of the plate. The dimensions of the specimen are given in Fig. 7 and the thickness is set to t = 1.

The system is subjected to tension in horizontal direction. The left and right boundaries are pulled up to
a final length of the specimen of 42 units. Furthermore, we fixed the vertical degrees of freedom for the
outer boundary of the plate. The analysis is performed under plane strain conditions and the specimen is
discretized with 1800 four-noded standard displacement elements. The three different orientations of the
preferred direction are

¥
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Fig. 7. Geometric properties of the rectangular plate with centered hole.
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a = (1,1,00"/v2, a,=(0.5,1,0"/v/125 and a;=(1,0,0)". (7.98)

The chosen free energy function i consists again of seven additive terms l/;j and we set

7
Y= Zlﬁj(ll,lz,13,J4,J5) with ¢, =1,...,7 = y,|i = 1,10,24,28,30,32,33. (7.99)
Jj=1

In the next equation we summarize the explicit expressions of the chosen ansatz functions:

() = oytrC

2(l3) = —d, In[Vdet C]
311, b, Ja, J5) = p5(tr[MCof C])°

J(I1,J3) = ¢y (tr[DC))? . (7.100)
s(11,J4,J5) = $y(tr[DCof C])°
oI, I3, J4,J5) = $gtr[DCof C]/(det €)'
U (11, 15,4, Js) = ¢, (tr[DC])*/(det €)'*

For the simulations we choose for the material parameters in (7.100) the values

SRS AR SRS RS

op = 14.0625, 6, =325.0, ys=3.64583 (7.101)

¢, = 3.515625, ¢, =20.3125, s =4.6875, ¢, = 15.234375 }

The free energy function (7.99) with the parameters (7.101) is referred to as the material parameter set 2
(MS 2). Choosing the Xj-axis as the preferred direction we obtain the corresponding linearized moduli at

the reference configuration

(d)

(b)

(c) )
Fig. 8. Tension of a rectangular plate with centered hole. Deformed configurations for material parameter set MS 1: (a) a;, (b) @, and

(c) a3, and material parameter set MS 2: (d) a;, (e) a, and (f) a3, respectively.



J. Schroder, P. Neff | International Journal of Solids and Structures 40 (2003) 401-445 429
([:11 =~ 10000, ([:12 ~ 30007 613 ~ 6000, 0333 ~ 14-0007 C44 ~ 200.0. (7102)

Fig. 8a—c depicts the deformed configurations at the final state for the material parameter set MS 1
and Fig. 8d-f those for the material parameter set MS 2 for three different orientations a;, i = 1, 2, 3 of
the rotational symmetry axis. For the non-aligned preferred direction with respect to the symmetry
planes of the plate the hole is deformed to a rotated ellipse, see Fig. 8a, b, d, e. For the orientation a3
the principal axes of the ellipse coincide with the symmetry planes of the specimen and the loading con-
ditions. A remarkable difference for the two material sets can be seen by comparing the expansion of the
hole. For the first parameter set the area of the final hole is much smaller than it is for the second parameter
set.

8. Conclusion

In this paper we have proposed the formulation of polyconvex transversely isotropic hyperelasticity in
an invariant setting. The constitutive models are based on the Clausius-Planck inequality, so the ther-
modynamic consistency is guaranteed. The main goal of this work has been the construction of polyconvex
anisotropic functions in the sense of Ball in order to guarantee the existence of minimizers of variational
principles in finite elasticity. For the free energy we have assumed an additive structure, i.e. it has been built
by the sum of additively decoupled terms. Each of these individual isotropic and anisotropic ansatz
functions fulfills the polyconvexity condition. The proofs of the polyconvexity for all proposed functions
have been given in detail and we have pointed out that several transversely isotropic free energies proposed
in the literature do not meet this condition. Furthermore, we have shown that the often used polynomial
mixed invariants Js and /;J; are not polyconvex. The construction of some polyconvex polynomial mixed
invariants has been motivated by certain physical interpretations and realized by use of the Cayley-
Hamilton theorem. One interesting result is the polyconvexity of the powers of the quadratic mixed in-
variant with respect to the cofactor of the right Cauchy—Green tensor. This term controls the deformation
of a preferred area element of an infinitesimal volume of the body. For the simulation of some model
problems the individual free energy terms can be additively merged so that in this class a wide variety of
ratios of anisotropy can be modeled. An extension of the proposed formulation to the case of orthotropic
material response is given. Here a variety of terms are already given by interchanging the one preferred
direction of the transversely isotropic case with the three perpendicular preferred directions of the ortho-
tropic material. Additional terms have been constructed by the powers of linear convex combinations of
polyconvex functions.

Appendix A. Proof of basic properties

In this part of the paper we investigate the polyconvexity conditions alluded to above. We focus our
attention on constitutive issues rather than existence theorems in Sobolev spaces. Therefore we do not
address growth conditions on the free energy. They can be met by a judicious choice of appearing para-
meters. Whereas the whole formalism derived up to now could be based on considerations pertaining to the
right Cauchy-Green tensor C = FTF the investigation of conditions like polyconvexity, quasiconvexity and
ellipticity are directly based on expressions defined on the deformation gradient F. Since we are interested
in applications to finite elasticity we restrict ourselves to three space dimensions. Our aim here is to leave
the presentation sufficiently selfcontained.

We begin with some simple observations which facilitate the further proofs allowing henceforth to re-
strict indicial calculations to a minimum.
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Lemma A.1 (Scalar product). Let 4, B € M* then

(4,B) := tr(4B")
defines a scalar product on M*** with induced Frobenius matrix norm

14]” = (4, 4).

Proof. Standard. [
Corollary A.2 (Properties of the scalar product). Let 4, B, C € M** and ¢ € R® then

L [|4B|| < ||4]|||B]|
2. |4-Cllgs < [|AI11]E ] g-
3. (4,BC) = (ACT,B) = (B"4, C).

Proof. Standard. O

Lemma A.3. Let A € GL(3,R). Then
VF € MY |JAF|* = Anin(A74)||F .

Proof. Some easy algebra. [
Let n, £ € R, then n ® ¢ € M¥? and (n ® ¢),; = n;&;. This yields the following

Lemma A.4 (Basic properties of the tensor product). Let A € M*3, v € R® and n @ ¢ € M**? then

L (n®&)v=n{ v)p.
208" =@

3. trace(n ® &) = (n, &)ps.
4. trace(n ® n) = |||z
5. 1ln ® &lI* = llnllzs 1€l
6.MREMDE)=MRE(E@n) = (n,Ep >0,

7. trace((n ® ¢)*)) = (trace(n @ &)™,

8.11(n® &) + (@ O = 2lmllEs 1€z

9. A ® & =An® L

10. @ &A=neAT.L

11.An @ A" = An @ A.L

12. rank(n ® &) = 1.

13. For every matrix A € M*** with rank(4) = 1 there exist vectors n, ¢ € R such that A = n ® &.
14.B=14+n@&=>B"'=1-—L_neiif(ndé #1

1+(n.&)
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A.1. Adjugate and determinant

Definition A.5 (4djugate AdjF = Cof (F)").
D(AdjF).H = AdjF{(F " ,H)1 — HF '}, (A.1)

D*(AdjF).(H,H) = 2AdjH, (A.2)

since AdjF is a quadratic expression. The same expansion can be done with the determinant. For H € M**?
we get after some computations

det(l + H) =1+ tr(H) + tr(AdjH) + det H.
Lemma A.6 (Properties of the Adjugate). Let 4, B, P € GI(3,R) and Q € O(3). Then we have:

CAdj(E@n) =0.

A (T +¢@n) =1+l —¢on

. Adj(4B) = AdjB Adj4.

.AdjAT = (AdjA4)".

.AdjAA™" = det A1.

. Adj(P~'4P) = P~'Adj AP, hence Adj is an isotropic tensor function.
(A (A7) = (Adia) ™. s 00

. Let D be a diagonal matrix, then AdjD = 0 X443 O

. trace(Ade) = Jods + 1Az + A1 4o, 0 0 Al

. trace(Adj (P~'4P)) = trace(Adj4).

- Adj (07 40)|” = ||Adj4]P”

(AjFTF, 1) = |AdjF|*.

. For Q € O(3) : Adj(QF) = (AdjF)Q" and |Adj(QF)|| = ||Adj F|.

O 00 3 AN B W N~

—_ e
W N = O

Remark A.7. The above properties carry over to non-invertible matrices as well.

Theorem A.8 (Cayley-Hamilton). Let A € M*3. Then A is solution of its characteristic polynomial
det (A1 —A4) =0, ie.

0 = 2 — trace(4)2” + trace(Adj )/ — det 42°
which means

0 = A4° — trace(4)4* + trace(Adj4)4 — det A1. (A.3)
Proof. Standard exercise. 0O

Lemma A.9 (Invariants). For all real diagonalizable A € M*** we set
]] (A) = tI'(A) = j.] + )»2 + )u3
IZ(A) = tl‘(Ad_]A) =M+ A+ A
]3(A) =detd = )»1/12)»3.
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Because of Theorem A.8 this implies

tr(F)” = tr(F?) 4 2tr(Adj F)

il 4+ 4, =242+ 224200+ ks + i), O

Lemma A.10 (Coeflicients of the characteristic polynomial). Let A be real diagonalizable and assume that
detd = 0. Then we have

I} (4) = 35L(4)
L(4) = 3L/(A)(A4).

Proof. Young’s inequality shows that 4;4; < (1/2)/11.2 + (1/2)}72,. Therefore /1% + ig + ig = Mg+ Aods + Aids.
Hence

G4 do+23) = (24 2422+ 2l 4 Jods + Jads) = 3(Aida + Jods + A1 d3)

which proves I;(4)* = 3L(4). In order to prove the second statement note that we may assume /;(4) # 0
without loss of generality since otherwise the statement is true anyway. Let therefore det4 # 0. Then the
inverse 4~' € M¥? exists and with the first statement we know 1,(4~")* = 3L,(4™"). Moreover A(4~"), =
1/4(4),. Therefore

1+1+1 2>3 1 N 1 N 1
o a s T\ ks dak
(Alﬂvzumulzs)z>3(AI+AZ+A3>

/1112/13 )u] /12/13

(AMda + 2ahs + 2073) = 30y + 7o + 23) (A1 243)

which is just I,(4)* = 31 (A)(4). O
Corollary A.11 (Estimates between ||F||, |AdjF|| and det F). Let F € M**®. Then we have

IF|]® = 3V3det F

IF]* = V3||AdjF||

IAdjF|]’ = 3V3(det F)
IF|I* = (FTF, 1) < V3| FTF|.

Proof. Set 4 = FT'F. The symmetry of 4 ensures the applicability of the previous Lemma A.10. Thus

L(4) = L(F'F) = tr(F'F) = ||F|]*

L(A4) = L(F'F) = tr(Adj (F'F)) = tr(AdjFAdjF") = ||Adj F||*

L(A) = L(F'F) = det FTF = (det F)?
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and also

1(4) > 35(4) = |IFI* > V3|AGF|
B(4) 2 3L (A)5(4) < |AGFI > V3||F|| det F.

The last two lines lead immediately to the second statement. The last statement is only a simple algebraic
estimate. [

Lemma A.12 (Properties of the anisotropy structural tensor M). Let n € R® with ||n|| =1 and define
M =n ®n. Then the following statements hold:

MT =M.

. M is positive semi-definite.

M™ =M.

(M) =1

M?* =M.

M = 1.

11 M’ = -2

g] =1-
-M)=1-

10. (ﬂ - ) is posztlve semi-deﬁnite.

I1. rank(M) = 1.

Stttk

12. AdjM = 0.
13. rank(1 — M) = 2 and Adj(1 — M) # 0.
14. Adj(1 — M) = M.

)
15. (H,H.M) > 0.

Lemma A.13 (Formal 2nd derivative of ¥(F) := W(F'F)). Let W : PSym(3)~ R. Then the second deriv-
ative of W(F) := W(FTF) verifies

D*¥(F).(H,H) =2@cW(F'F),H"H) + 0z W(F'F).(F'"H + H'F,F"H + H'F)
Proof. Standard exercise. O
Appendix B. General convexity conditions

Definition B.1 (Convexity). Let K be a convex set and let ' : K+— R. We say that ¥ is convex if
WOF + (1= )F) < (F) + (1 = )W ()
forall i, , € K and 1 € (0,1).

Remark B.2. Observe that in this definition it is necessary to have the function # be defined on a convex set K.

Lemma B.3 (2nd derivative and convexity). Let K be a convex set and let W : K+— R be two times differ-
entiable. Then the following statements are equivalent.

1. W is convex.
2.D*W(F).(H,H) =0 VF € K, VH € Lin(K),

where Lin(K) is the linear hull of K.
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Proof. Rockafellar (1970), page 27. O

Remark B.4. In order that W : K — R be convex it is not sufficient to assume only
D*W(F).(H,H) =0

forall F € K, VH € K. Since for example with W : PSym~— R, W(C) = det C we have that K = PSym is a
convex set (cone) and

D*W(C).(H,H) =2(C,AdjH) >0
for C, H € PSym, but W(C) = det C is not convex as a function of C.

Lemma B.5 (Convexity on M**3 and P Sym(3)). Let C € PSym(3) and W : P Sym(3)— R and assume that
VH € Sym(3) : D2y(C).(H,H) = 0 and Dcyy(C) € PSym,(3). Then the function

WM =R, FsW(F):=yF"F) (B.1)

is convex.

Proof. Use Lemma A.13 for the second derivative of ' and observe that
Lin(PSym) = Sym.

Apply then basic properties of the scalar product. O

Lemma B.6 (Convexity of the square). Let P : R"+— R be convex and P(Z) = 0. Then the function
Z e R"—[P(2)][P(Z)]

s convex.

Proof. Assume first that P is a smooth function. The second differential of E(Z) = P(Z)P(Z) can be easily
calculated. We get

D,E(Z).H = P(Z)D,P(Z).H + D,P(Z).HP(Z)
DE(Z).(H,H) = 2(P(Z)D,P(Z).(H,H) + D,P(Z).HD,P(Z).H) > 0.
Hence E(Z) is convex. In the non-smooth case we proceed as follows:
E(AZi + (1 — 1)Z,) = [P(2Z + (1 — W) Z,)|[P(AZy + (1 — W) Z)].
The assumed convexity of P shows that
[P(AZy + (1 — A)Z,)| < [AP(Z)) + (1 — M)P(Zy)].

Since the square function is a monotone increasing function for positive values and assuming that
[AP(Z)) + (1 — A)P(Z,)] is positive we get the estimate

EQZ 4 (1 = 1) Z,) <[AP(Z)) + (1 — )P (2,)].
However, since the square function is itself convex we may proceed to write
EQZ + (1 = 2)Zy) < 2P(Z))* + (1 = DP(Z,)* = JE(Z) + (1 — J)E(Z,).
The proof is complete. [
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Corollary B.7. Let P : R"+— R be convex and assume that P(Z) = 0. Then the function
ZeRwn[P@), p>1

is convex.
Proof. The same ideas as before carry over to this situation. [

Remark B.8 (Nonconvexity of mixed products). Let P, : R"— R, i = 1, 2 be convex and assume P; > 0. Then
the function

Z e R"—[P(2)|[P(Z)]

is in general non-convex.

Lemma B.9 (Convexity and monotone composition). Let P : R"+— R be convex and let m : R— R be convex
and monotone increasing. Then the function R"+— R, X —m(P(X)) is convex.

Proof. A direct check of the convexity condition. [J

Appendix C. Convexity of special terms

Lemma C.1 (Isochoric terms). Let W(F) = ||F||*/ det F3. Then W is polyconvex.

Proof. We investigate first the convexity of the function P: R x R—R, P(x,y) = f(x)g(»y). The matrix of
second derivatives is of course

o (fRE0) @)
DPlxy) = (f’(X)g’(y) 1@ () )

If f, g are positive, smooth and convex then we have f”(x)g(y) > 0 and det D*P(x,y) = f"(x)g(»)f (x) x
¢'(y) — (f'(x)g'(x))*. Observe that P is convex, if D*P is positive definite by Lemma B.3. In our situation
D?’P is positive definite, if f”(x)g(y) >0 and detD?P(x,y) >0. Thus we must guarantee that

[ @) (8" ) = (f ()8 (x))*.
Let > 0 and p > 2. We choose f(x) =x* and g(y) = »”. Then

S'®)g0)f ()" (v) = alo+ 1)xFHyPxp(p — 1)y
and

(7 (x)g () = (—oo 3y 17 = o200 200,
We arrive at the condition that

o+ 1 p
= —. .
x« ~ p—1 (C.1)

The larger one chooses p, the better for the choice of o. Notably P(x,y) = (1/x*)y* is convex for oo = 2/3

and p = 2. We set
_1EP
&

W(F, &) =P |F|)
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We check the convexity of W (F,¢). Thus

2
|40 + (1 = DB
(A& + (1= A)&)

WOF + (1= ), 28 + (1= 2)&) = P(2& + (1 = )&, [|2F + (1 - DB|) =

and the monotonicity of the square function for positive arguments yields
I+ (- A)HFzII)
(2& + (1= i)éz)

W(F + (1= )F, 28 + (1 - 1)&) < “

P28+ (1= )&, AR+ (1 = A)[[A]).

Since by assumption P is convex, we get
WOR + (1= AF, 28 + (1= 2)&) SAPEL IR + (1= P&, 1))

Now recall the extension of W to all of M*** and use (3.29). Thus we have shown that W is convex on the
convex set M*** x R* and convexly extended to M** x R. The proof is complete (see also Dacorogna,
1989, page 140). O

Lemma C.2 (Convex terms). Let X € M*** and M = 5 ® . Then the following terms are each convex as
functions in X

[tr(XTXM))* k> 1.

[tr(XTX (1 — ))]Avk > 1.
[tr(XTXMXTXM)] k> 1.

[tr(XTx)) +tr(XTX)tr(XTXM)

5 X 2tr(XTX)]” + tr(XTX)tr (XX (1 — M)).
6. X = L r(XTX)]” + tr(XTXXTXM),

IIIII

and the statements remain true if X is changed into X" since linear transformations leave convexity properties
invariant.

Proof. 1. [tr(X"XM)]" = (X, XM)*. We compute the second differential:

Dy ((X,XM>k) H = kX, XM (X, HM) + (H,XM)) = 2k(X, XMY" (X, HM)

D2 (<X,XM>") (H,H) = 4k(k — D)X, XM (XM, H)? + 2k(X, XM)*" (H, HM) > 0
in this context see also A.12 Eq. (15).

k
2. [tr(XTX(1 — M) = <HX||2 - HX.nHés) . We may apply the same reasoning as in the previous line.
Observe that

(K17 = hxalP) =0 if flnl = 1.

(trXTxMXTXM)) = (XTXM, MXTX) = (XX (n @ 1), (1@ n)X X
= XTXnen), neXnX) = (XnonX", X[ oXn)"
= (X @X0), X @ X)) = |(X @ X)|* = || Xtk

Hence, computing the differentials yields
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D (IX-nllf ) H = 451X | (X, H s
) 4k dk—4 2 4k—2
D3 (I8 )-(H H) = 4k(4k = 21Xl 357 O g, H o) + 4|X 1557 (g, Hog)g > 0.

4. tr(X"X)? + tr(X"X)tr(XTXM) = || X||* + ||X ||| X ][5 . We calculate the second differential, which yields
Dy (IIXH4 + HXIIZIIX-HII%»%).(H,H) = 8(X, H) + 4(|X ||| H|* + 8(X, H)(X .0, H.n)g
+ 20Xl 1+ 20 (1 -l
> 8(X, H) + 41X P1H1* = 8UXNIH nll ) NHI1X nlls)
+ 20X G 1P + 201X 1P 1H s
> 8(X, H)* +4/|X|||H|
— AIX A nllEs — AIE X nl5 + 20X 05 |+ 20XV H 0l
> 8(X, H)* + 41X |PI1H* = 20X IP1H-nllgs — 201 H 171X ]l
> 8(X,H)" >0,
where we have used Young’s inequality.

5. X 20tr(XTX)) + tr(X X)) te(XTX (1 — M) = 2||X||* + | X|]P||[X (1 — M)|>. We calculate the second dif-
ferential, which yields

D)Z((ZHXH4 + XX (1 - M)||2>-(H7H) = 16(X, H)* + 8|X|*|H| + 8(X, H)(X(1 — M), H(1 - M))
+2X (1 = M)A + 20X [P H (@ - M)l
> 16(X, H)* + 8|X|1||H|* = 8IXIHIX (1 = M)|[|H (1~ M)
20X (1= M) + 20X 1H (1 = M)
> 16(X, H) + 8| X|P|1H | — 411X |*(1H (1 - M)
— 4IH X (1 = M)+ 20X (1 - M) |H|?
+2X1PH (1 - M)
> 16(X, H)* + 8|X|P||H|* — 411X |(1H|*1 (0 — M)
—4[HIPIX PN = M) + 20X (1 = M)IPIHI® + 20X P (1 = M|
> 16(X, H)” + 8||X|P||H|* = 21X |*|H|*]1(V — M)
= 2= IX ) = M)
> 16(X, H)” + 8||X|P||H|* = 8|.X|*|H| = 16(X,H) > 0.
6. (1/2)[tr(X™X)]” + tr(X"XXTXM) = (1/2)||X||* + || XX .5||3:. Compute the differentials

1
Dx(§ X1 + ||XTX~’7||§<3>-H = 20X 1)1 + XX o0, (XTH + HTX)n) o

1
D% (I + XXty ), ) = 2P+ 40 ) + 20X HTH )

+|(XTH + H™X) )35

> 2||X|P|H|)” + 400, H) = 20X |PI1HP|In]l5
+ |(XTH + H™X) .|

— 44X, HY + |(X"H+H"X)q% =0. O
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Lemma C.3 (Generic polyconvex terms). Let F € M*** and M = 5 @ y. Then the following terms are each
polyconvex for k = 1:

[tr(FTE) ) e(FTA (TR - M)

; (det[FTF])} T (det[FTF))t (det[FTF))}
o [HAGETF)] AETRML | [e(AETF) (1 - M)
(det[FTF])} (det[FTF])F (det[FTF])}
Proof.

[e(FTE)E )

" (det[FTF])®  (detF)

2
3

and we may use the same ideas as in the proof to Lemma C.1 to conclude that the term is polyconvex.

[e(F" ) (F M) (F.F(on)  [|Fal™

" (det[FTF])Y  (detF) (detF)} (detF)S

We have already shown (see Eq. (C.1)) that the function P(x,y) = (1/x*))” is convex provided that o = 2/3
and p = 2k > 2. Now define a new function

= 1.
W(F0) = P Pal) =5
Observe that by the monotonicity of the square for positive arguments we have the inequality
12F -+ (1= 2B < (A F ]| + (1 = 2)|[Ben )™, (C2)

It remains to check the convexity of W (F,{). To this end

A~

WE + (1= 2)F, 2 + (1= 2)%) = PGS + (1= )0, [|4F . + (1= 2)Fun])
_ 2R+ (1 - ﬂ»)Fz-nH”‘.
L+ (1= 2)5)

With Eq. (C.2) we have
ZIFal + (1= A)[Fnl)*™
(A0 + (1= 2)6)
=P + (1 = )G, A Fal + (1= AliFal).
The convexity of P yields
W (F + (1= 2)Fs, iy + (1= 2)0) <P [IFn]) + (1= )P, 1)
=W (F, L) + (1= D)W (B, G).

W(F + (1= )Fy, 2L+ (1= 2)5) <

The proof is finished bearing the correct extension (3.29) in mind.
Il 70)) Ty 01
(det[FTF])} (det F)3

and we proceed as in the second case.
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tr(Adi(FTF))* | AdjF|[* .
4. [ r(( J[( - ]))l)] = ”( L |)|2 and we proceed as in the first case.
det[FTF])? det F)3

[tr(AFETF)M)]" | AdjFT |

> (det[FTF))} (det F)}

and we proceed as in the second case.

6. r(AdI(FTF) (1 — M) _ [|AdiFT(0 — )"
(det[FTF])} (det F)}

and we proceed as in the second case. O

Corollary C.4 (Generic exponential polyconvex terms). Let F € M**® and M = n @ n. Then the following
terms are each polyconvex for k = 1:

1. exp _M 2. exp [tr(FTFM)]:‘
| (det[FTF)): (det[FTF])?
3. exp |HFTEC —Mlm"]’ 4. oxp | TAGETF))
(det[FTF))? (det[FTF))
5. exp | HAGETRM) ] 6. oxp [[tr(Adj(FTF)(ﬂ —IMW]
(det[FTF]): (det[FTF]):

7. exp [W(F)] if W(F) is polyconvex.

Proof. By the foregoing lemma each argument of the exponential is polyconvex. Since exp is convex and
monotone increasing it preserves the underlying convexity. Hence the composition is polyconvex. Observe,
however, that these functions alone are not stress-free in the reference configuration. [

Lemma C.5 (Special polyconvex terms). Let F € M**®. Then the following terms are each polyconvex as
functions Fr—R":

) i
1. Fo ﬂ—3 ,
(detF)

. 3 J P J
2. s [ IAGEIE 5 m) _ (IADEIE 5 7)o,
(detF) (detF)

A\

peS}

Proof.

1. We have already checked in Lemma C.1 that the expression (|| 1>/ (det F ) ) is polyconvex, hence there
exists a convex function P(F,det F) = (||F||*/(det F)7). Observe that by the estimates for the invariants
Lemma A.11 we know that P(F,det F) — 3 > 0. We define the function [a], = max{a,0}. Observe that
x+— max{f(x),0} is convex if f is convex. Then

<% _ 3> =[P (F,detF) -3],.
et

XeR!

PNy
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P is convex in X and x+—x’, i > 1 is monotone increasing for positive values and convex, hence
P(x) - 3],
is altogether convex in X, which is however the polyconvexity of
Frs [P(F,detF) — 3]..

Since this last expression coincides with

( IFIE 3>’
(det F)3

the polyconvexity is proved. O
2. We know already that (| AdjF|’/(det F)*) — 3v/3 is polyconvex since the exponents verify the decisive

inequality (« + 1)/o = p/(p — 1). Moreover, ||AdjF|’/(det F)*) — 3v/3 > 0 with Lemma A.11. Now ex-
actly the same reasoning as before applies.

Corollary C.6. Let F € M**®. Then the following more general terms are each polyconvex:

FlI% i
1. F— L‘ng . ix=1, k=1
(det F)?

S

|

-3k 7
2.1“—)(%—(3\/%’{)7 j=1, k=1
(¥

r 2% i
3. Fi— exp %—3" -1, i=1, k>1.
|\ (detF)3

r . 3k J
4. F— exp (”(2(?—;)”2,{—(3\/5)">]_1, j=z1, k=1
€

Proof. Apply the same ideas as above and observe that exp is a convex monotone increasing function, so
that we may apply Lemma B.9. O

One might be tempted to use some other ansatz terms in order to construct polyconvex strain energies.
However, we have e.g.

Lemma C.7 (Non-elliptic terms I). Let F € M*® and M = a @ a. Then the following terms are each non-
elliptic, hence non-quasiconvex:

1. Frstr(FTEM)tr(FTF) = tr(CM)tr(C).

2. Fstr(FYFFTEM) = tr(C*M).

3.FH<M_3>;<U<A@< ¢ >>_3)':<tr<Adj( ¢ l>_ﬂ>>l i1
(det F)3 (det C) (det C)?

wal—
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Proof.

1. See Proof (3).

2. See Proof (5). X ,

3. Even though ||AdjF||*/(det F)* — 3 > 0 in light of Lemma A.11, the term ||AdjF||*/(det F)3 alone does

not have the right exponents to be polyconvex. Moreover it can be shown that the term is non-elliptic
(Dacorogna, 1989). O

Lemma C.8 (Non-elliptic terms I1). Let F € M> and M = a ® a with ||a|| = 1. Then the following terms are
each non-elliptic, hence non-quasiconvex:

C C
1. F— exp a®a ) —1) — ,a®a ).
(det C)? (det C)?
q
2. F— ¢ -a®a)—1|,qg=2.
(det C)?

Observe that both terms have stress-free reference configuration.

Col—

Proof. We show the non-ellipticity of the first expression. The non-ellipticity of the second one follows
along the same lines. We calculate

C FTF 1 5
—,a®a)=( ———,a®a ) = s ||F.all”.
(det C)3 (detF)? (detF)?

Set FF = Fy + t& ® n. This yields

Falf = |17 + e @ ]’ 2: 1Fo.-a + t&(n, @)’ 2
3 (detllo + ¢ @n))F  (detFy + (AdjFT, & @ 1) + 0+ 0)F
_ Roal® +26Fy.a,&) (n,a) + (¢, &) (n, )
(det By + £(1, Adj Fy.¢ @ )’
_ | Fo-all” +26(Fy-a, &) (n,a) + £(&, &) (n, @)
(det Fy + t{AdjFyp.¢, )} '

(det F)

Now we choose

1 1 0 1 »
o) () )

This yields
llall = (<[l = llnll = 1,

SN
oSk

QUO O
N~ —

1
a, = (4, ==
(@ = (0.8 =5
(n,&) =0,
1
Fi'lm=a, dethh=-, Fa=n

d
det Foa = det FiyFy ' = Adj Fo.n.
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As a consequence, we get

|Fo-all* + 26(Foa, &) (n, @) + 2(E, &) na) _ [Inll + 160, &) (. @) + 2 E) (@) 1+0+255
(det Fo + 1(Adj Fo.¢,m))* (L4 ¢, AdjF )} (L+ (& AdjFy.n))’
B L+ 1+
- 2 T 2
Ly tdetR 3 3
(7+tdetFy(¢,a)) ;(l—i-t%)
Thus
1+ 1+7 5
he)y=W(E+Eon=exp | ——2— 1| -— 2
1 1)’ 1 1)
d%(l—i—tﬁ) d%<1+t\/§)

If we choose 1/ d3 = 3 it turns out that 4 is not convex in , hence (Theorem 3.5) W is not elliptic. We remark
that the non-ellipticity is mainly due to the fact that

C
—,a®a ) =1
<<detc>3 >

is in general not true (consider F, = diag(n, 1,1)), whereas

€ _1)>3
(det C)3

holds by virtue of Lemma A.11. O

Lemma C.9 (Non-elliptic terms III). Let F € M** and M = a ® a with ||a|| = 1. Then the following terms are
non-elliptic, hence non-quasiconvex:

l. F—W(F) = citr(CM) — ¢; In \/tr(CM).
2.F—W(F) =ctr(AdjCM) — ¢, In \/tr(Adj CM).

with ¢y, ¢c; > 0. Observe that these terms have a physically desired singularity in fiber direction, i.e.
Ws(F) - 00 as Fa—0
Ws(F) — oo as AdjF.a — 0.

Proof. We show that the ellipticity condition is in general violated for the first term. We calculate
Ws(F) = ertr(CM) — ¢, In /tr(CM) = ¢, ||F.a||’ — e;In||F.a|| = ¢)||F .a| _% In ||F.al.

Then calculating the first and second differential yields

mmmﬂzkﬂwﬁM—mgFW@H@
.a

P2 (F.a,H.a)’ ) .
IF.al*

1
[ﬂWHF)GLH):2qLHaV—wa<EE—FHHa
.a



J. Schroder, P. Neff | International Journal of Solids and Structures 40 (2003) 401-445 443

Take H = ¢ @ n with ||€]| = ||n]| = 1. This gives
DWs(F).((@n,E@n) = 2a1]|Em,a)| —c (IIF R 1€, @)]* -2

2 <'17a> <F.a, 5><’77a>2
=2ci1(n,a)” — 2 5 —2 7 .
) <|F.a| |F.al >

<F.a,s<n,a>2>)
|F.al’

Without loss of generality assume that ¢ is chosen such that (F.a, &) = 0. It follows that

D*Ws 2 ——2 ).
(F).(¢@n,¢@n) = (n,a) < Fal )

If the deformation F in fiber direction a is such that ||F.a||> < (c,/2¢,) then

DAW(F).(E @ n,E @) = {n, ><21 i C;||2><

Observe that the more severe the deformation in fiber direction is, the more the ellipticity condition is
violated. It is thus just the physically interesting region ||F.a|| small which fails to be elliptic. Now we
consider the second term. We calculate

Ws(F) = ci1tr(AdjCM) — ¢, In \/tr(AdjCM) = ¢,||AdjF".a|® _% In ||AdjF".a|?

Cy

DW =2¢;{AdjFT.a, DAdjFT.HT. S S—
5(F).H = 2c,(Adj ] a) — IAdFT alf

S(AdjF".a,DAdjF".H" .a)

D*Wy(F).(H,H) = 2c,[(DAdjF*.H .a,DAdjF* . H" .a) + (AdjF".a, D’AdjF".(H",H").a)]
- m (DAJjF".H".a,DAdjF* .H" .a)

jFl.a
+ (AdjF".a, D’°AdjFT .(H" ) H").a)]

2
n %
|Adj FT.al|

Since D*AdjF.(H,H) = 2AdjH and for H = ¢ ® n we have Adjé ® n = 0, it follows that

(AdjF".a, DA F" H" .a)’.

2 |DAiFTH".a|’

D*Ws(F).(E®n,E® 1) = 2¢,||DAdFT.H .a|* — ———2——
s(F).(E@n, ¢ ®@n) =2c||DAd] I A FTa]

L 7 (AdiF".a, DAdjF".H" .a)’
IIAdJFT al*
— IDAdiFT.H  a|f*|2¢) — — 2
2
|AdjFT.al|

2¢,

— =2 (AdjF".a,DAdiF".H".a)’.
IIAdJFT al’*
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Consider (AdjF".a, DAdjFT.H" .a). If we choose F~".a = s¢ with s € R", then
(AdjF".a,DAJjF" . H" .a) = (det FF ".a, AdjF"[(F',H")1 — H'F"].a)
=detFH(FTa, FT[(F'\n@&1 - (e &F .a)
=detF*(Fa, (F "0, F "a—F'.(n® &)F ".a)
— det F? [HF‘T.aHz(F_T.n, & — (FTa,FT.(ne g)F-T.aﬁ
= det P2 [ EIPF T 0, &) — (6 (F T 2 8).8)]
=det F>s*[L{F~".&,n) — (n, F'.E1)] = 0.

With this choice we get

. C
D*Ws(F).((@n,E@n) = ||DAGFTH .a|*|2¢; - ————
5(F).(C@n,c@n) = |DAdj [ _ ' TAGET
= |[DAdjFT.H" .a|?|2¢, —#2
T detP?||FTal
— IDAGFTH  a|*[2¢, — —2 1.
[DAdj all|2er = o e

Since F can still be chosen with det 7/ = 1 taking s > 0 sufficiently small finishes the argument. [
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